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Abstract
Motivation: Software is vital for the advancement of biology and medicine. Impact evaluations of scientific software have primarily emphasized 
traditional citation metrics of associated papers, despite these metrics inadequately capturing the dynamic picture of impact and despite chal
lenges with improper citation.
Results: To understand how software developers evaluate their tools, we conducted a survey of participants in the Informatics Technology for Cancer 
Research (ITCR) program funded by the National Cancer Institute (NCI). We found that although developers realize the value of more extensive metric col
lection, they find a lack of funding and time hindering. We also investigated software among this community for how often infrastructure that supports 
more nontraditional metrics were implemented and how this impacted rates of papers describing usage of the software. We found that infrastructure such 
as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers 
seemed to be associated with increased mention rates. Analysing more diverse metrics can enable developers to better understand user engagement, jus
tify continued funding, identify novel use cases, pinpoint improvement areas, and ultimately amplify their software’s impact. Challenges are associated, in
cluding distorted or misleading metrics, as well as ethical and security concerns. More attention to nuances involved in capturing impact across the spec
trum of biomedical software is needed. For funders and developers, we outline guidance based on experience from our community. By considering how 
we evaluate software, we can empower developers to create tools that more effectively accelerate biological and medical research progress.
Availability and implementation: More information about the analysis, as well as access to data and code is available at https://github.com/ 
fhdsl/ITCR_Metrics_manuscript_website.
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1 Introduction
Biomedical software has become a critical component of bio
medical research and enabling major advancements of medi
cine. Often such software is initially developed so that the 
developers can use it themselves and then used by others for 
research (Bitzer et al. 2007). However, the life span of bio
medical software projects is often cut short because mainte
nance and continued evaluation is not prioritized by funding 
institutions or promotion committees (Prli�c and Procter 
2012). Ultimately the academic infrastructures built around 
manuscripts are from a time before software and the internet 
and result in an inefficient ecosystem that rewards new soft
ware but does not invest in software that has already been 
built. This revolving door ultimately undermines the impact 
that software projects can have on biomedical research and 
ultimately healthcare. Prioritizing metric collection beyond 
citations can help funders, promotion committees, and devel
opers to better understand the impact and challenges of soft
ware projects (Waller 2018).

To understand current practices and challenges of software 
developers, we performed a survey of participants in the 
Informatics Technology for Cancer Research (ITCR) program 
funded by the National Cancer Institute (NCI). We also manu
ally investigated software among this community to assess 
how often infrastructure that supports evaluations is imple
mented and how this impacts rates of papers describing usage 
of the software. We find that developers recognize the utility 
of analysing software usage, but struggle to find the time or 
funding for such analyses. Recognizing the significance of 
comprehensive software metrics, and providing dedicated 
funding for developers to robustly collect and analyse such 
data, would enable biomedical software and the research it 
supports to achieve drastically greater real-world impact.

1.1 Citations alone are not enough
Software with impact is not necessarily highly cited. A study 
of 4971 academic biomedical and economics articles found 
that software citations only included version information 
28% of the time (Howison and Bullard 2016). Another study 
evaluating 90 biology articles found that version information 
was included only 27% of the time and URL information 
only 17% of the time (Du et al. 2021). Specifically, among 
ITCR-funded software examples, users may forget to cite a 
tool for visualization, such as the UCSC Xena Genome 
Browser (Goldman et al. 2020). Users might also forget to 
cite tools used in initial phases of a project, such as EMERSE 
(Electronic Medical Record Search Engine) (Hanauer et al. 
2015) which helps identify patient cohorts. Tools which pro
vide access to other software may also not be cited. Examples 
include Bioconductor (Huber et al. 2015), Gene Pattern 
Notebook (Reich et al. 2017), and Galaxy (The Galaxy 
Community 2022). Understanding system-level tool usage 
may require looking at individual tools on these platforms. 
Finally, researchers often only describe a tool without citing 
it and can do so in unusual locations within manuscripts, 
such as a figure legend.

Another challenge is that manuscripts for software are a 
snapshot and do not reflect the evolving nature of the soft
ware. Typically, it is much easier to publish manuscripts for 
new software. However, researchers can save time if they can 
continue working with tools they are already familiar with.

A new type of manuscript for software updates has been 
proposed (Merow et al. 2023). This could reward developers 

who start working on software after the initial publication, 
and provide new ways for funding agencies and others to bet
ter recognize software maintenance.

1.2 Appropriate use of metrics is the way forward
Metrics beyond citations can be very powerful for continued 
evaluation and improvements to software. Table 1 explains 
the benefits of software evaluations for developers, including 
identifing ways to optimize the tool, to guide future work, to 
garner funding support, to enhance user commitment, and to 
motivate community development. Citations alone are insuf
ficient in capturing the dynamic nature of scientific software 
usage and they are inadequate for helping guide developers to 
improve their tools.

Evaluation metrics for the purpose of continued develop
ment can include the number of new users, returning users, 
and total downloads of the software, but the types of possible 
metrics vary based on the type of tool and context (see  
Table 2). These and other metrics can allow assessment of the 
rate of establishment within a community. Proper metrics 
should not only examine the software’s performance but assess 
if motivations and goals of the users using the software are be
ing met. Ideally metrics also help gather information about the 
downstream impact of the tool on biomedical research.

Despite these strengths, developers and funders must un
derstand challenges and nuance in interpreting these metrics. 
Communities like CHAOSS (Community Health Analytics in 
Open Source Software) have focused on the proper collec
tion, evaluation, and standards for software metric collection 
https://chaoss.community/. In an effort to have more expan
sive metrics adopted by the biomedical research community, 
we aim to provide guidance for evaluations of software im
pact and engagement. We also discuss ethical considerations 
and challenges of such evaluations that still require solutions. 
The guidance presented here holds the potential for develop
ers to improve the use and utility of their tools, improve their 
chances of funding for future development, and ultimately 
lead to the development of even more useful software to ad
vance science and medicine (Wratten et al. 2021).

2 Materials and methods
We performed two analyses to get a sense of software evalua
tion within the community of developers of the ITCR pro
gram funded by the NCI. Our first surveyed developers to 
better understand how they think about software evaluation. 
Our second aimed to determine what infrastructure is often 
implemented to support software evaluation and if such im
plementation was associated with the frequency of papers de
scribing usage of the software (see Supplemental Note S1).

In the first analysis, we surveyed 48 ITCR participants. 
Limited time (68% of respondents) and funding (57% 
respondents) were major barriers for performing software 
impact evaluations (respondents could select multiple bar
riers). Although a few funding mechanisms support the main
tenance and analysis of software (as opposed to creation of 
new software), such as the ITCR sustainment awards (Kibbe 
et al. 2017, Warner and Klemm 2020), or the Essential Open 
Source Software for Science program of the Chan Zuckerberg 
Initiative (Science 2019), more funding for software sustain
ability is needed compared to what is currently available. 
Awareness of this need was also demonstrated by the recent 
Declaration on Funding Research Software Sustainability by 
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the Research Software Alliance (ReSA) (Barker et al. 2023). 
While scientific software has become critical to most research
ers, the funding to support the maintenance of such software is 
not reflective of the current level of usage (Siepel 2019). The 

next major barriers were privacy concerns (38% of respond
ents), technical issues (32% of respondents), and not knowing 
what methods to use for evaluations (27% of respondents). 
Despite these apparent challenges, 73% of respondents state 

Table 1. Needs, goals, and benefits of software evaluation.

Need Specific goal Benefit

Tool optimization Improving workflows Identify unexpected usage
Identify code inefficiencies
Identify resource usage inefficiencies
Identify inadequate documentation
Identify mismatches with defaults and use

Improve performance Assess user wait times
Measure data volume

Improve usage Identify software errors
Identify what features are used and not used
Identify who the user-base is
Determine user-base diversity
Identify sources of other possible users
Determine what users’ expectations are
Determine if user expectations are appropriate
Evaluate success of outreach approaches

Improve implementation Identify barriers for adoption
Identify methods to support adaption
Identify use of out-dated versions

Improve usability Identify user errors
Identify if and how users are struggling

Tool development  
& maintenance

Guide future work  
motivate continued support

Enumerate data types being used

Discover opportunities for new features
Discover data needed to address user goals
Identify more appropriate resource allocation

Gain support Show evidence of impact Support future funding requests
(to maintain or develop new tools)
Request for resources
(to maintain or develop new tools)

Gain user commitment Evidence of tool acceptance Reassure users about tool to:
– Promote continued use
– Promote usage of new tools by the same developers
– Promote usage by more diverse users

Gain community development Evidence of co-development Encourage contributions

Software evaluation can support identification for tool optimization and development and can demonstrate tool value to others.

Table 2. Example metrics.

Measure Example metrics Use

Tool dissemination • Total unique downloads (Thelwall and Kousha 2016, Eisty et al. 
2018, Zhao et al. 2021) 

• New users (Begany et al. 2021, Sayyed-Alikhani et al. 2021) 
• Returning users (Begany et al. 2021, Sayyed-Alikhani et al. 2021) 
• Download count by version (Rossi et al. 2010, Howison 

et al. 2015) 

• Determining popularity of a given tool

• Download count by version • Assessing if users are keeping up-to-date
Tool usefulness • Number of software engagements by user (Begany et al. 2021, 

Chang et al. 2021)
• Determining prevalence of usage

Tool reliability • Proportion of runs without a crash or error (Eisty et al. 2018, 
Hunter-Zinck et al. 2021) 

• Test coverage (Hunter-Zinck et al. 2021) 

• Improving error handling, bug fixes

Tool versatility • Distribution of data types (inferred from metadata) (Eisty 
et al. 2018)

• Improving tool flexibility & generalizability

Interface acceptability • Proportion of visitors who actually engage with the tool (Kumar 
and Hasteer 2017, Ramakrishnan and Gunter 2017) 

• User error frequency (Kumar and Hasteer 2017, Eisty et al. 2018) 

• Graphical tool and website acceptability

Performance • Maximum memory usage (Eisty et al. 2018) 
• Average time–to–complete of algorithmic steps (Eisty et al. 2018) 

• Requirements analysis 
• Tuning 

A variety of metrics can be used to attempt to interpret to usefulness, reliability, and uptake by the community and more. Here, we describe metrics used by 
the authors of the paper. See Lenarduzzi et al. (2020), Eisty et al. (2018), Thelwall and Kousha (2016) for more information about metrics used by others.
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that such evaluations have informed new development ideas, 
60% stated that it informed documentation, and 54% stated 
that it helped justify funding (respondents could select multiple 
benefits). Thus, additional support for evaluations of software 
usage and impact could greatly benefit the continued develop
ment of software. Responses to an open-ended question asking 
“Is there anything you would like to measure but have been 
unable to capture?” included (each of these examples were 
unique responses): collaborations that the tool supported, the 
number of commercial applications using the tool, the fraction 
of assumed user base that actually uses the tool, the down
stream activity—what do users do with the results, and user 
frustration. These responses outline many of the challenges 
that developers often face. See Supplemental Table S1 and 
Supplemental Note S2 for examples of the goals of the 
respondents.

We also manually inspected 44 scientific research tools, 33 
of which were funded by ITCR alone, and seven funded by 
the Cancer Target Discovery and Development (CTD2) 
Network (Aksoy et al. 2017), as well as four tools funded by 
both. Each were inspected for infrastructure that could help 
users know about the tool or how to use it, as well as possible 
infrastructure related to software health metrics that indicate 
how recently the code was rebuilt or tested (Srivastava and 
Schumann 2011). We then investigated if there were any 
associations with these aspects and usage. A variety of differ
ent types of research-related tools or resources were 
inspected—see Table 3. Each tool or resource was manually 
inspected (by someone not involved in developing these tools) 
to get the experience of a potential user briefly examining re
lated websites to determine if the tool had: a DOI for the soft
ware itself, information on how to cite the software, 
information on how to contact the developers, documenta
tion (and how much), an X/Twitter presence, and badges 
about software health metrics (such as those related to main
tenance and testing) (Srivastava and Schumann 2011) visible 
on a related website.

To evaluate a proxy for usage, we used the SoftwareKG- 
PMC database (Kr€uger and Schindler 2020), which does not 
include citations to tools, only plain-text mentions inferred 
by a text-mining algorithm. This was to enable us to capture 
cases where users may have mentioned but not necessarily 
cited a tool. Importantly, mentions also do not always indi
cate usage. The database does not know anything about these 
tools per se, and not all of these mentions necessarily corre
spond to the same tool. For example, DANA is an ITCR tool 

for microRNA analysis but there are other tools with the 
same name. Although time since the tool release was the larg
est contributor to variation in the number of papers describ
ing usage, various aspects of infrastructure that could help 
users know about a tool (social media on twitter), have confi
dence in the tool (badges about software builds or tests), or 
learn more about how to use the tool (extensive documenta
tion and feedback mechanisms) all seemed to be associated 
with an increased rate of manuscripts that described using 
the tool. All show significant association (P < 0.05) with us
age when not accounting for tool age. Only having extensive 
feedback mechanisms was significantly associated when also 
accounting for tool age (see Fig. 1). For more information 
about this analysis, see our website https://hutchdatascience. 
org/ITCR_Metrics_manuscript_website/.

3 Results
The results of our evaluation of scientific software suggests 
that infrastructure can support the collection of more metrics 
and support more mentions of software in papers. 
Specifically, our results showed that active social media, 
more in-depth documentation, clear methods to contact 
developers, and software health metrics [metrics related to 
how often the software is tested, developed, etc (Srivastava 
and Schumann 2011)] appear to enhance mentions in papers.

The infrastructure described in Table 4 and Supplemental 
Note S3 could enable more comprehensive metrics about 
insights regarding software usage and impact. Funders and 
developers should consider these elements when considering 
the impact and new directions for a project.

4 Discussion
With new metrics collected through the software infrastruc
ture described in Table 4 comes a new host of challenges that 
require guidance. Here, we layout how the metrics collected 
from the infrastructure discussed in the previous section 
should be handled appropriately. The following are guidance 
based on the composite experience of the authors:

4.1 Successful evaluations are anchored by an 
understanding of the intended use of the software
The intended goal or purpose of the scientific software should 
inform how the software is evaluated (Basili et al. 1994). 
Computational tools are designed to support well-defined 

Table 3. Scientific tools and resources evaluated.

Type Description Count Percentage

Plug-in/extension These tools are plug-in or extension software that adds func
tionality to other software

2 4.5

Jupyter/Python These tools are scripts written in Python or Jypyter Notebooks 5 11.4
Database/Ontology These tools provide users access to data or standards 5 11.4
Computing platforms These tools allow users to upload data and perform analysis on 

a cloud or server
5 11.4

Web-based tools These tools are hosted on a website where users can access the 
tool and use it

6 13.6

Desktop applications/command- 
line tools

These tools require users to download the tool to their com
puter or server, desktop applications may or may not require 
command-line interactions, while command-line tools do

9 20.5

R packages Software written in the R programming language 12 27.3
Total NA 44 100

Here, we show the variety among the 44 ITCR and CTD2 scientific research tools/resources evaluated for various characteristics by manual inspection for 
infrastructure used to support software evaluation metrics beyond software paper citations.
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goals often called use cases (Gamma et al. 1995) for specific 
sets of users called personas (Cooper 2004). Efforts to evalu
ate the impact of tools should be guided by a clear under
standing of these, use cases and personas to assess how well 
the tools meet the intended goals and for all intended users.

4.2 Metric selection should be hypothesis driven
Collecting an exhaustive amount of user data before selecting 
metrics can increase the risk that metrics are selected in a bi
ased manner. This can lead to picking metrics that look good 
but are not necessarily as meaningful to the intended usage of 
the tool. To mitigate this, metrics can be selected ahead of time 
based on a specific hypothesis to ultimately evaluate how well 
the software supports its intended goals (Mullen 2020).

4.3 No single evaluation method works for every 
type of software
No individual scheme for collecting metrics fits every type of soft
ware tool. The meaning of a set of metrics may differ across con
texts. For example, the location of a tool (e.g. on the web or 
downloaded) can influence user access to software versions and 
how one might collect metrics. For a web-based application, 
users will rarely have access to older versions. Thus, developers 
can add version updates and collect metrics with clarity about 

how usage changed. For locally run tools, users may be using 
older, previously-downloaded versions. Additionally, tools that 
are installed on institutional servers have much smaller installa
tion counts than those installed on individual computers. No one 
metric is one size fits all and each software tool must be thought
fully planned out for how it should be evaluated.

4.4 Metrics require interpretation
Metric interpretation is rarely straightforward. A spike may 
correspond to a workshop using the tool or a recent publica
tion citing the tool. Negative trends may indicate a break in 
the academic calendar, holidays, down time of a host server, 
or software bugs. It is also important to avoid comparisons 
between metrics for tools with different users and contexts.

Total unique downloads might indicate software popular
ity, but does not tell us whether users found it useful. Instead, 
metrics about returned usage by the same users or the number 
of launches of the software over a certain predefined session 
time threshold may better evaluate actual usage. For tools 
that offer access or analyses of different data types, one may 
want to parse usage by data types to evaluate how useful the 
tool appears to support different kinds of users. Specific 
measures can provide a common basis comparing versions 
and potentially against other similar software.

Figure 1. Aspects of software infrastructure appear to be associated with a larger number of published manuscripts from users describing usage of the 
software in the SoftwareKG-PMC database. The X-axis indicates the age of the software by showing the year that it was released. The Y-axis indicates 
the log of the total number of papers that describe usage of the software in the SoftwareKG-PMC database. See Supplementary material and our 
website for more information.
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Table 4. Software infrastructure can enable the capture of valuable metrics for evaluating engagement and impact.

Elements Options Tools to enable met
ric collection

Possible enabled metrics Considerations

Web presence Web-based tool • Cronitor for tools using 
cron job scheduling 
(Peters 2009)) 

• Google Analytics 

• Identify where your 
tool is being used 

• Possibly identify what 
data are being used 

May need to consider pri
vacy restrictions for 
tracking IP addresses

Documentation website • Google Analytics • Counts of page views 
and scrolls

Pages with more views 
may identify widely used 
features or confus
ing aspects

Citability Provide a way to cite such 
as a direct software DOI 
(Fenner 2018), as well as 
publishing software 
manuscripts and infor
mation on how to cite, 
can help people to cite 
your software

• To create DOIs: 
Zenodo, Dryad, 
Synapse, and Figshare 

• To track DOIs:  
Altmetric 

• Total citation counts 
• Counts of citations by 

journals of differ
ent fields 

Semantic Scholar provides 
reports that indicate 
where citations have oc
curred within scientific 
articles. Direct DOIs for 
software (in addition to 
software manuscripts) is 
a useful and recognized 
method for allowing 
others to cite software, 
especially when manu
scripts are not yet pub
lished. See Smith et al. 
(2016) for best practices. 
Not all DOI managers 
are created equally and 
some have more verifica
tion processes (Amorim 
et al. 2015)

Contact Feedback mechanisms • GitHub issue templates 
• Surveys 

• User feedback count 
• Addressed user feed

back count 

Often users will only pro
vide feedback if some
thing is broken. 
Depending on the tool, 
many users may not be 
comfortable with 
GitHub Issues

Discussion forums • Discourse 
• Biostar (Parnell 

et al. 2011) 
• Bioinformatics 

Stack Exchange 
• Google Groups 

• Metrics based on user 
engagements and an
swered questions

Forums can illustrate the 
amount of community 
activity with a particular 
tool (Parnell et al. 2011, 
Howison et al. 2015). 
They can also save time 
for development as users 
help each other instead 
of developers answering 
individual emails for re
peat problems (Prli�c and 
Procter 2012). A code of 
conduct can help create 
a supportive community

Newsletter emails • Mailchimp 
• HubSpot 

• Count of newslet
ter openings 

• Count of link clicks 
• Count of unsubscribers 

Newsletters can help in
form users about 
new features

Usability testing • Observe a few people use 
the tool 

• Discussion forums 

• Zoom screen sharing 
and recording 

• Discussion 
Forums (above) 

• Qualitative information 
about how users inter
act with your software

Even low numbers of us
ability interviews (3) can 
yield fruitful lessons that 
can be paired with other 
metrics to guide develop
ment. Forums that pro
vide Q&A can identify 
usability issues and bugs 
(Howison et al. 2015, 
Patrick 2020)

Workshops • Online or in-person 
• Basics or new features 

• Attendees can participate 
in surveys

• Quantity, duration, and 
attendance at work
shops are metrics that 
can be reported to fund
ing agencies

Recordings can be posted 
on social media (for ad
ditional metrics).

(continued) 
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4.5 Metrics of best practices provide indicators of 
software health
Tracking adherence to best practices of software engineering 
can be a useful way to assess software project health 
Srivastava and Schumann (2011), including the use of version 
control systems, high coverage of code with testing, and use 
of automated or continuous integration. None of these meas
ures of project health are perfect (and can be done poorly) 
but can collectively indicate software health. Including 
badges for such indicators on code repositories and websites 
can give users and others confidence. Some software pack
ages can help automatically assess package health like the 
riskmetric package (https://pharmar.github.io/riskmetric/) for 
evaluation of R packages (R Validation Hub et al. 2024). 
Additional detail on these topics, can be found in The 
Pragmatic Programmer(Thomas and Hunt 2019). See  
Table 5 and Supplemental Note S4 for suggestions.

4.6 Metrics related to software quality and 
reusability could reassure users and funders
Software reusability metrics have been suggested to enable 
better discernment of the capacity for code to be reused in 
other contexts. These metrics can also evaluate if code is writ
ten to be more resilient over time to dependency changes and 
other maintenance challenges. One example would be the de
gree to which aspects of the software are independent of one 
another (Mehboob et al. 2021). As research funders start to 
value software maintenance more, metrics related to resil
ience and reusability may become more valuable. Other simi
lar metrics related to maintainability have been used in the 
software community for some time relying on metrics such as 
the number of code comments, lines of code, or code com
plexity metrics (Wang 2006), but open source software proj
ects with community contributors can make aspects related 
software maintainability a challenge (Oman and Hagemeister 
1994, Welker 2001, Ganpati et al. 2012).

5 Challenges and nuances
Here, we outline a number of challenges and nuances associ
ated with evaluating metrics for software usage and impact.

5.1 Distorted metrics
Projects like the ITCR-funded Bioconductor (Huber et al. 
2015), with a large variety of software packages, offer an op
portunity to assess distortion of metrics by evaluating how 
different packages are used over time, revealing important 
nuances (see Table 6). Overall major themes seen include, ac
cidental usage by scripts that accidentally loop through 
downloading a piece of software many times, usage of soft
ware to support other software for technical reasons, as well 
as unexpected patterns of persistent use after a tool is theoret
ically no longer as useful. This is believed to be due to down
loads on servers using lists of historically typically used 
packages. Finally, background levels of usage with low levels 
of downloads even for tools that are no longer supported.

5.2 Clinical data challenges
Clinical data often contain protected health information 
(PHI). Thus, the number of individuals that have access to 
the data is generally smaller. Many tools containing clinical 
data are also run at an enterprise level (such as the ITCR- 
funded tool, EMERSE), meaning they are installed only one 
time by system administrators and accounts are provisioned 
to users. Thus, counting installations does not represent the 
overall use. Further, security mechanisms to protect clinical 
data inhibit developers from accessing the installed systems 
themselves. Ultimately, due to downloads typically being at 
an institutional level for clinical tools, metrics around soft
ware downloads underestimate their impact. It would not be 
realistic to compare the usage metrics of such tools to more 
widely available and accessible tools.

5.3 Goodhart’s law
Goodhart’s law states that “every measure which becomes a 
target becomes a bad measure” (Hoskin 1996). For example, 
h-indices (the number of papers an author has with that 
many or more citations) are used to assess an author’s im
pact. As the h-index grew in popularity, the number of 
researchers included as coauthors, the number of citations 
per paper, and the fraction of self-citations increased, each 
leading to an increased h-index. Although metrics could be 
used to bring about best practices for binary outcomes (i.e. 
public deposition of code), for more quantitative metrics (e.g. 
number of downloads) the results could easily become 

Table 4. (continued) 

Elements Options Tools to enable met
ric collection

Possible enabled metrics Considerations

Social media • YouTube videos 
• Twitter/Mastodon 
• Instagram 
• LinkedIn 

• Hootsuite—social me
dia management

• Engagement metrics 
(video watch counts, 
likes, etc.)

Pairing social media met
rics with software en
gagement metrics can 
determine if outreach 
strategies are successful

Reviews Review forum • SourceForge 
• GitHub 

• Stars 
• Watchers 
• Forks 
• Number of reviews 

Positive reviews, active 
community participa
tion, and code review 
can be reassuring to fun
ders and users alike

Note that there are other helpful tools to enable metric collection. These are simply examples based on the experience of software developers funded by 
ITCR, e.g. the developers of QIIME 2 (Bolyen et al. 2019) found metrics from workshops, forums, and other forms of outreach valuable for evaluating 
community uptake and user experience. Altmetric at https://zenodo.org/, Google Analytics at https://docs.github.com/en/actions, Bioinformatics Stack 
Exchange at ttps://bioinformatics.stackexchange.com, Cronitor at https://cronitor.io, Discourse at https://www.discourse.org/, Dryad at https://datadryad. 
org/, Figshare at https://figshare.com, Google Groups at https://support.google.com/groups, Hootsuite at https://www.hootsuite.com/, HubSpot at https:// 
www.hubspot.com, Mailchimp at https://mailchimp.com/, Semantic Scholar at https://www.semanticscholar.org/, Singularity at https://sylabs.io/, 
Sourceforge at https://sourceforge.net/, Synapse at https://www.synapse.org/, and Zenodo at https://zenodo.org/.
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meaningless. The impact behind this concept cannot be en
tirely avoided because of fundamentals of human behaviour 
but one way to minimize this effect is to continue to evaluate 
metrics over time, to consider if our metrics are truly measur
ing what we think they are, to consider if our metrics are ac
tually fair to a diverse range of projects, and to consider new 
metrics as needed (Fire and Guestrin 2019). Funding agencies 

need to consider how each type of tool is context-dependent, 
and that impact should be compared between similar classes 
of tools.

5.4 Security, legal and ethical considerations
Often with phone-home software (the collection of informa
tion from the computers of users that downloaded or 

Table 5. Software health infrastructure.

Infrastructure Options Tools to enable met
ric collection

Possible enabled metrics Significance for users, developers, 
and funders

Version control Without 
automation

• Git/GitHub (The insight 
tab and API allow for 
systematic met
ric collection) 

• Git/GitLab 
• BitBucket 

• Commit frequency (how of
ten code is updated) 

• Date of the most re
cent commit 

• Number of active 
contributors 

• Software versions updates 

Commit frequency allows assessment of how 
actively the software is being maintained. 
The number of contributors can indicate 
sustainability. One single contributor may 
pose a sustainability risk. Version infor
mation can enable users to determine if 
they are using the most up-to-date version. 
Developers can utilize these metrics to de
termine which projects need more atten
tion and to garner support from funding 
agencies to prove that they have done a 
thorough job developing and maintaining 
the software

With automations • GitHub actions 
• Travis CI 
• CircleCI 

• Current build status (if the 
software built without errors)

Continuous integration and continuous de
ployment or delivery are terms to describe 
a situation where every time code is modi
fied, the full code product is automatically 
rebuilt or compiled. Continuous deploy
ment or delivery describes the automatic 
release of this new code to users. Delivery 
in this case describes situations where the 
software requires more manual releases 
while deployment is seamless. GitHub 
Actions can also help with metric collec
tion from the GitHub API. Developers can 
use build status to understand if the soft
ware is performing appropriately. This 
can help funders to recognize how well a 
tool is working and being developed 
and maintained

Testing Automated testing • GitHub Actions 
• Travis CI 
• CircleCI 

• Test code coverage (the frac
tion of lines of code in the 
project that are covered 
by tests)

Unit tests check individual pieces of code; 
component and integration tests check 
that pieces of code behave correctly to
gether; acceptance tests check the overall 
software behaviour. Achieving in-depth 
test coverage requires careful software de
sign. Test coverage does not evaluate the 
quality of the test cases or assertions. Test 
metrics can help users, developers, and 
funders understand how thoroughly and 
robustly the code has been assessed for ab
errant behaviour

Licensing A variety of 
licenses exist to 
allow or disal
low reuse and 
to require 
attribution

• Creative commons • Possible quantification of re
use of your software code

Clearly indicating if and how people can re
use your code will make them more com
fortable to do so. Determining when this 
is done can be a challenge, but requiring 
attribution makes this more feasible. This 
can indicate to users and funders if the 
developers have carefully considered the 
downstream use of their code outside of 
their own software. This can better enable 
additional tools to be built using your 
code and can help you to track usage if 
you use a license that requires attribution 
for reused coded

Infrastructure that enables collecting metrics about software health (meaning how robustly software was built and maintained) (Srivastava and Schumann 
2011), can reassure users and funders. Bitbucket at https://bitbucket.org/product, CircleCI at https://circleci.com/docs, Creative Commons at https:// 
creativecommons.org/licenses/, GitLab at https://about.gitlab.com/, GitHub at https://github.org, GitHub actions at https://docs.github.com/en/actions, and 
Travis CI at https://config.travis-ci.com/.
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installed a particular software) or web-based analytics, users 
are tracked for specific usage. Occasionally software develop
ers will notify users that they are being tracked, however this is 
often not required. The General Data Protection Regulation 
(GDPR), implemented in 2018, requires that organizations 
anywhere in the world respect certain data collection obliga
tions regarding people in the European Union. It is intended to 
protect the data privacy of individuals and mostly guards 
against the collection of identifiable personal information. 
Data collection of software usage needs to be mindful of the 
GDPR and any other international regulations. As science is 
particularly an international pursuit, often users may reside 
outside the country where the tool was developed.

One way to mitigate this is to let users choose if they wish 
to be tracked. Developers can also design tracking to be more 
anonymous. A genome visualization tool may track the num
ber of unique uses, but not track what part of the genome 
was visualized [as is the case for the UCSC Xena Genome 
Browser (Goldman et al. 2020)]. Google Analytics (https:// 
marketingplatform.google.com/about/analytics/) provides 
support to mask unique IP addresses of visitors to a website 
tracked by the system. Ethical and legal consequences should 
be considered when designing or implementing tracking sys
tems of software (see Supplemental Note S5 for more 
information).

5.5 Conclusions
Our assessments indicate that cancer software developers of 
the ITCR find it difficult to find the time or funding to evalu
ate the impact and usage of their software using metrics, de
spite their awareness of the benefits. Many have found such 
evaluations useful for driving future development and obtain
ing additional funding. A sizable portion (27%) of those 

surveyed self-reported as not knowing what methods to use 
for such evaluations. We also find from our manual evalua
tion of a subset of scientific software tools that tools appear 
to be more widely used when developers provide deeper doc
umentation, badges about software health metrics, and more 
in-depth contact information, as well as having a Twitter 
presence. It is not clear why this is. It may be that those who 
have the time and support to more thoroughly document and 
advertise their tools may also have more resources to devel
oper the tool itself, lending to wider usage. However, it may 
also be that a social media presence brings new users to tools 
and that the other infrastructure (badges, deeper documenta
tion, etc.) help new users to trust software. Further studies 
are necessary to understand these patterns. However, it sug
gests that supporting developers to spend more time on such 
elements could drive further usage of existing tools. We hope 
that funding agencies will value supporting developers to 
evaluate, promote, and maintain existing tools in addition to 
the current typical model for most agencies to prioritize the 
creation of new tools. A recent article (Merow et al. 2023) 
suggested that a new type of manuscript for software updates 
may help the field to better reward maintenance of existing 
software. We argue that inclusion of evaluations of software 
impact and usage could also be incorporated into such a 
model for software-related manuscripts.

While metric collection beyond traditional citations is only 
one piece of the software development workflow, we feel that 
it has been underappreciated by funding institutions and pro
motion committees. In addition, while common metrics may 
be valuable for comparisons of similar types of tools, other 
types of metrics may give more insight about the downstream 
impact of a tool in terms of what development and advance
ments in the field that the software supported. For example, 

Table 6. Distorted metrics.

Distortion Example

Accidental usage Occasionally scripts used on servers may inadvertently download a package repeatedly and rapidly hun
dreds to thousands of times, resulting in distorted download metrics that are not representative of real 
usage. Unique IP download information is useful to distinguish between one user downloading many 
times versus many users a few times. Given privacy concerns, an alternative solution could involve track
ing the timing and approximate location of downloads with a threshold for what would be more than 
expected as maximum real usage, like a group of people following a tutorial

Background usage There is a baseline background level of downloads across all packages in Bioconductor (including those 
that are no longer supported). Thus, if a new package has 250 downloads in the first year this may seem 
like a successful number, but actually it is similar to background levels

Technical versus research usage It can be difficult to discern if the usage of a package is for scientific research itself or supporting the imple
mentation of other software. While both are arguably valuable, distinguishing between these motiva
tions can help us understand a particular software’s impact in a field. For example, the S4Vectors 
package (10.18129/B9.bioc.S4Vectors) (Pag�es et al. 2022) is an infrastructure package used by many 
other packages for technical and non-biological reasons and is therefore not often directly downloaded 
by end-users. This package is also included in automated checks for other Bioconductor packages using 
GitHub actions. Another example of support implementation is in the context of container image use. 
Containerization software [like Docker (https://www.docker.com/) and Singularity] often install soft
ware packages for individual environments that could inflate usage metrics statistics. For instance, a user 
who is actively developing a container may re-trigger the build and thus installation of associated soft
ware many times over the course of a project

Usage persistence The affy package (10.18129/B9.bioc.affy) (Gautier et al. 2004) was one of the early packages for microar
ray analysis, a technology that has largely been replaced by newer technologies, which can be seen by 
the rate of microarray submissions to GEO overtime. However, despite the field transitioning away 
from microarray methods (Mantione et al. 2014), the package was downloaded in 2021 at rates that 
doubled the rates in 2011. The authors speculate that this could be due to people historically requesting 
that affy be installed on servers and that this is just persisting, or perhaps it is being used for preliminary 
hypothesis testing using existing micrarray data, or perhaps it is being used because other microarray 
packages are no longer supported

Here, we provide more in-depth information about metric distortion themes identified evaluating tools in Bioconductor (which is ITCR-funded). GEO ¼
Gene Expression Omnibus.
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perhaps we should consider how much a software tool 
inspires the development of other tools, the value of the 
papers that cite a tool (perhaps by citation rate, measures of 
innovation, or measures of clinical impact, such as clinical tri
als) Certainly as scientific software continues to be critical for 
scientific and medical advancement, we should continue to 
think beyond the software citation model and consider the 
infrastructure and metrics we have discussed here as we 
determine how to support scientific software developers in 
the future.
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