
Data and text mining

Best practices to evaluate the impact of biomedical
research software—metric collection beyond citations
Awan Afiaz 1,2, Andrey A. Ivanov 3, John Chamberlin4, David Hanauer5, Candace L. Savonen2,
Mary J. Goldman6, Martin Morgan7, Michael Reich8, Alexander Getka9, Aaron Holmes10,11,12,13,
Sarthak Pati 9,14,15, Dan Knight10,11,12,13, Paul C. Boutros 10,11,12,13, Spyridon Bakas9,14,15,
J. Gregory Caporaso16, Guilherme Del Fiol 4, Harry Hochheiser 17, Brian Haas18, Patrick D. Schloss19,
James A. Eddy20, Jake Albrecht20, Andrey Fedorov21, Levi Waldron 22, Ava M. Hoffman 2,
Richard L. Bradshaw 4, Jeffrey T. Leek2, Carrie Wright 2,�

1Department of Biostatistics, University of Washington, Seattle, WA, 98195, United States
2Biostatistics Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, United States
3Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta , GA, 30322, United States
4Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, 84108, United States
5Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, 48109, United States
6UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, United States
7Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, United States
8University of California, San Diego, La Jolla, CA, 92093, United States
9University of Pennsylvania, Philadelphia, PA, 19104, United States
10Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, United States
11Institute for Precision Health, University of California, Los Angeles, CA, 90095, United States
12Department of Human Genetics, University of California, Los Angeles, CA, 90095, United States
13Department of Urology, University of California, Los Angeles, CA, 90095, United States
14Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine,
Indianapolis, IN, 46202, United States
15Center for Federated Learning, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
16Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, United States
17Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, United States
18Methods Development Laboratory, Broad Institute, Cambridge, MA, 02141, United States
19Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States
20Sage Bionetworks, Seattle, WA, 98121, United States
21Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02138, United States
22Department of Epidemiology and Biostatistics, City University of New York Graduate School of Public Health and Health Policy, New York,
NY, 10027, United States
�Corresponding author. Biostatistics Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, P.O. Box 19024, Seattle, WA 98109-1024,
United States. E-mail: cwright2@fredhutch.org
Associate Editor: Jonathan Wren

Abstract
Motivation: Software is vital for the advancement of biology and medicine. Impact evaluations of scientific software have primarily emphasized
traditional citation metrics of associated papers, despite these metrics inadequately capturing the dynamic picture of impact and despite chal
lenges with improper citation.
Results: To understand how software developers evaluate their tools, we conducted a survey of participants in the Informatics Technology for Cancer
Research (ITCR) program funded by the National Cancer Institute (NCI). We found that although developers realize the value of more extensive metric col
lection, they find a lack of funding and time hindering. We also investigated software among this community for how often infrastructure that supports
more nontraditional metrics were implemented and how this impacted rates of papers describing usage of the software. We found that infrastructure such
as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers
seemed to be associated with increased mention rates. Analysing more diverse metrics can enable developers to better understand user engagement, jus
tify continued funding, identify novel use cases, pinpoint improvement areas, and ultimately amplify their software’s impact. Challenges are associated, in
cluding distorted or misleading metrics, as well as ethical and security concerns. More attention to nuances involved in capturing impact across the spec
trum of biomedical software is needed. For funders and developers, we outline guidance based on experience from our community. By considering how
we evaluate software, we can empower developers to create tools that more effectively accelerate biological and medical research progress.
Availability and implementation: More information about the analysis, as well as access to data and code is available at https://github.com/
fhdsl/ITCR_Metrics_manuscript_website.

Received: 5 December 2023; Revised: 28 May 2024; Editorial Decision: 29 May 2024; Accepted: 22 July 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(8), btae469
https://doi.org/10.1093/bioinformatics/btae469
Advance Access Publication Date: 27 July 2024
Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/8/btae469/7721930 by guest on 26 January 2026

https://orcid.org/0000-0001-5801-9087
https://orcid.org/0000-0001-7476-1329
https://orcid.org/0000-0003-2243-8487
https://orcid.org/0000-0003-0553-7520
https://orcid.org/0000-0001-9954-6799
https://orcid.org/0000-0001-8793-9982
https://orcid.org/0000-0003-2725-0694
https://orcid.org/0000-0002-1833-4397
https://orcid.org/0000-0001-7363-0327
https://orcid.org/0000-0003-1325-6067
https://github.com/fhdsl/ITCR_Metrics_manuscript_website
https://github.com/fhdsl/ITCR_Metrics_manuscript_website

1 Introduction
Biomedical software has become a critical component of bio
medical research and enabling major advancements of medi
cine. Often such software is initially developed so that the
developers can use it themselves and then used by others for
research (Bitzer et al. 2007). However, the life span of bio
medical software projects is often cut short because mainte
nance and continued evaluation is not prioritized by funding
institutions or promotion committees (Prli�c and Procter
2012). Ultimately the academic infrastructures built around
manuscripts are from a time before software and the internet
and result in an inefficient ecosystem that rewards new soft
ware but does not invest in software that has already been
built. This revolving door ultimately undermines the impact
that software projects can have on biomedical research and
ultimately healthcare. Prioritizing metric collection beyond
citations can help funders, promotion committees, and devel
opers to better understand the impact and challenges of soft
ware projects (Waller 2018).

To understand current practices and challenges of software
developers, we performed a survey of participants in the
Informatics Technology for Cancer Research (ITCR) program
funded by the National Cancer Institute (NCI). We also manu
ally investigated software among this community to assess
how often infrastructure that supports evaluations is imple
mented and how this impacts rates of papers describing usage
of the software. We find that developers recognize the utility
of analysing software usage, but struggle to find the time or
funding for such analyses. Recognizing the significance of
comprehensive software metrics, and providing dedicated
funding for developers to robustly collect and analyse such
data, would enable biomedical software and the research it
supports to achieve drastically greater real-world impact.

1.1 Citations alone are not enough
Software with impact is not necessarily highly cited. A study
of 4971 academic biomedical and economics articles found
that software citations only included version information
28% of the time (Howison and Bullard 2016). Another study
evaluating 90 biology articles found that version information
was included only 27% of the time and URL information
only 17% of the time (Du et al. 2021). Specifically, among
ITCR-funded software examples, users may forget to cite a
tool for visualization, such as the UCSC Xena Genome
Browser (Goldman et al. 2020). Users might also forget to
cite tools used in initial phases of a project, such as EMERSE
(Electronic Medical Record Search Engine) (Hanauer et al.
2015) which helps identify patient cohorts. Tools which pro
vide access to other software may also not be cited. Examples
include Bioconductor (Huber et al. 2015), Gene Pattern
Notebook (Reich et al. 2017), and Galaxy (The Galaxy
Community 2022). Understanding system-level tool usage
may require looking at individual tools on these platforms.
Finally, researchers often only describe a tool without citing
it and can do so in unusual locations within manuscripts,
such as a figure legend.

Another challenge is that manuscripts for software are a
snapshot and do not reflect the evolving nature of the soft
ware. Typically, it is much easier to publish manuscripts for
new software. However, researchers can save time if they can
continue working with tools they are already familiar with.

A new type of manuscript for software updates has been
proposed (Merow et al. 2023). This could reward developers

who start working on software after the initial publication,
and provide new ways for funding agencies and others to bet
ter recognize software maintenance.

1.2 Appropriate use of metrics is the way forward
Metrics beyond citations can be very powerful for continued
evaluation and improvements to software. Table 1 explains
the benefits of software evaluations for developers, including
identifing ways to optimize the tool, to guide future work, to
garner funding support, to enhance user commitment, and to
motivate community development. Citations alone are insuf
ficient in capturing the dynamic nature of scientific software
usage and they are inadequate for helping guide developers to
improve their tools.

Evaluation metrics for the purpose of continued develop
ment can include the number of new users, returning users,
and total downloads of the software, but the types of possible
metrics vary based on the type of tool and context (see
Table 2). These and other metrics can allow assessment of the
rate of establishment within a community. Proper metrics
should not only examine the software’s performance but assess
if motivations and goals of the users using the software are be
ing met. Ideally metrics also help gather information about the
downstream impact of the tool on biomedical research.

Despite these strengths, developers and funders must un
derstand challenges and nuance in interpreting these metrics.
Communities like CHAOSS (Community Health Analytics in
Open Source Software) have focused on the proper collec
tion, evaluation, and standards for software metric collection
https://chaoss.community/. In an effort to have more expan
sive metrics adopted by the biomedical research community,
we aim to provide guidance for evaluations of software im
pact and engagement. We also discuss ethical considerations
and challenges of such evaluations that still require solutions.
The guidance presented here holds the potential for develop
ers to improve the use and utility of their tools, improve their
chances of funding for future development, and ultimately
lead to the development of even more useful software to ad
vance science and medicine (Wratten et al. 2021).

2 Materials and methods
We performed two analyses to get a sense of software evalua
tion within the community of developers of the ITCR pro
gram funded by the NCI. Our first surveyed developers to
better understand how they think about software evaluation.
Our second aimed to determine what infrastructure is often
implemented to support software evaluation and if such im
plementation was associated with the frequency of papers de
scribing usage of the software (see Supplemental Note S1).

In the first analysis, we surveyed 48 ITCR participants.
Limited time (68% of respondents) and funding (57%
respondents) were major barriers for performing software
impact evaluations (respondents could select multiple bar
riers). Although a few funding mechanisms support the main
tenance and analysis of software (as opposed to creation of
new software), such as the ITCR sustainment awards (Kibbe
et al. 2017, Warner and Klemm 2020), or the Essential Open
Source Software for Science program of the Chan Zuckerberg
Initiative (Science 2019), more funding for software sustain
ability is needed compared to what is currently available.
Awareness of this need was also demonstrated by the recent
Declaration on Funding Research Software Sustainability by

2 Afiaz et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/8/btae469/7721930 by guest on 26 January 2026

https://chaoss.community/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae469#supplementary-data

the Research Software Alliance (ReSA) (Barker et al. 2023).
While scientific software has become critical to most research
ers, the funding to support the maintenance of such software is
not reflective of the current level of usage (Siepel 2019). The

next major barriers were privacy concerns (38% of respond
ents), technical issues (32% of respondents), and not knowing
what methods to use for evaluations (27% of respondents).
Despite these apparent challenges, 73% of respondents state

Table 1. Needs, goals, and benefits of software evaluation.

Need Specific goal Benefit

Tool optimization Improving workflows Identify unexpected usage
Identify code inefficiencies
Identify resource usage inefficiencies
Identify inadequate documentation
Identify mismatches with defaults and use

Improve performance Assess user wait times
Measure data volume

Improve usage Identify software errors
Identify what features are used and not used
Identify who the user-base is
Determine user-base diversity
Identify sources of other possible users
Determine what users’ expectations are
Determine if user expectations are appropriate
Evaluate success of outreach approaches

Improve implementation Identify barriers for adoption
Identify methods to support adaption
Identify use of out-dated versions

Improve usability Identify user errors
Identify if and how users are struggling

Tool development
& maintenance

Guide future work
motivate continued support

Enumerate data types being used

Discover opportunities for new features
Discover data needed to address user goals
Identify more appropriate resource allocation

Gain support Show evidence of impact Support future funding requests
(to maintain or develop new tools)
Request for resources
(to maintain or develop new tools)

Gain user commitment Evidence of tool acceptance Reassure users about tool to:
– Promote continued use
– Promote usage of new tools by the same developers
– Promote usage by more diverse users

Gain community development Evidence of co-development Encourage contributions

Software evaluation can support identification for tool optimization and development and can demonstrate tool value to others.

Table 2. Example metrics.

Measure Example metrics Use

Tool dissemination • Total unique downloads (Thelwall and Kousha 2016, Eisty et al.
2018, Zhao et al. 2021)

• New users (Begany et al. 2021, Sayyed-Alikhani et al. 2021)
• Returning users (Begany et al. 2021, Sayyed-Alikhani et al. 2021)
• Download count by version (Rossi et al. 2010, Howison

et al. 2015)

• Determining popularity of a given tool

• Download count by version • Assessing if users are keeping up-to-date
Tool usefulness • Number of software engagements by user (Begany et al. 2021,

Chang et al. 2021)
• Determining prevalence of usage

Tool reliability • Proportion of runs without a crash or error (Eisty et al. 2018,
Hunter-Zinck et al. 2021)

• Test coverage (Hunter-Zinck et al. 2021)

• Improving error handling, bug fixes

Tool versatility • Distribution of data types (inferred from metadata) (Eisty
et al. 2018)

• Improving tool flexibility & generalizability

Interface acceptability • Proportion of visitors who actually engage with the tool (Kumar
and Hasteer 2017, Ramakrishnan and Gunter 2017)

• User error frequency (Kumar and Hasteer 2017, Eisty et al. 2018)

• Graphical tool and website acceptability

Performance • Maximum memory usage (Eisty et al. 2018)
• Average time–to–complete of algorithmic steps (Eisty et al. 2018)

• Requirements analysis
• Tuning

A variety of metrics can be used to attempt to interpret to usefulness, reliability, and uptake by the community and more. Here, we describe metrics used by
the authors of the paper. See Lenarduzzi et al. (2020), Eisty et al. (2018), Thelwall and Kousha (2016) for more information about metrics used by others.

Best practices to evaluate the impact of biomedical research software 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/8/btae469/7721930 by guest on 26 January 2026

that such evaluations have informed new development ideas,
60% stated that it informed documentation, and 54% stated
that it helped justify funding (respondents could select multiple
benefits). Thus, additional support for evaluations of software
usage and impact could greatly benefit the continued develop
ment of software. Responses to an open-ended question asking
“Is there anything you would like to measure but have been
unable to capture?” included (each of these examples were
unique responses): collaborations that the tool supported, the
number of commercial applications using the tool, the fraction
of assumed user base that actually uses the tool, the down
stream activity—what do users do with the results, and user
frustration. These responses outline many of the challenges
that developers often face. See Supplemental Table S1 and
Supplemental Note S2 for examples of the goals of the
respondents.

We also manually inspected 44 scientific research tools, 33
of which were funded by ITCR alone, and seven funded by
the Cancer Target Discovery and Development (CTD2)
Network (Aksoy et al. 2017), as well as four tools funded by
both. Each were inspected for infrastructure that could help
users know about the tool or how to use it, as well as possible
infrastructure related to software health metrics that indicate
how recently the code was rebuilt or tested (Srivastava and
Schumann 2011). We then investigated if there were any
associations with these aspects and usage. A variety of differ
ent types of research-related tools or resources were
inspected—see Table 3. Each tool or resource was manually
inspected (by someone not involved in developing these tools)
to get the experience of a potential user briefly examining re
lated websites to determine if the tool had: a DOI for the soft
ware itself, information on how to cite the software,
information on how to contact the developers, documenta
tion (and how much), an X/Twitter presence, and badges
about software health metrics (such as those related to main
tenance and testing) (Srivastava and Schumann 2011) visible
on a related website.

To evaluate a proxy for usage, we used the SoftwareKG-
PMC database (Kr€uger and Schindler 2020), which does not
include citations to tools, only plain-text mentions inferred
by a text-mining algorithm. This was to enable us to capture
cases where users may have mentioned but not necessarily
cited a tool. Importantly, mentions also do not always indi
cate usage. The database does not know anything about these
tools per se, and not all of these mentions necessarily corre
spond to the same tool. For example, DANA is an ITCR tool

for microRNA analysis but there are other tools with the
same name. Although time since the tool release was the larg
est contributor to variation in the number of papers describ
ing usage, various aspects of infrastructure that could help
users know about a tool (social media on twitter), have confi
dence in the tool (badges about software builds or tests), or
learn more about how to use the tool (extensive documenta
tion and feedback mechanisms) all seemed to be associated
with an increased rate of manuscripts that described using
the tool. All show significant association (P < 0.05) with us
age when not accounting for tool age. Only having extensive
feedback mechanisms was significantly associated when also
accounting for tool age (see Fig. 1). For more information
about this analysis, see our website https://hutchdatascience.
org/ITCR_Metrics_manuscript_website/.

3 Results
The results of our evaluation of scientific software suggests
that infrastructure can support the collection of more metrics
and support more mentions of software in papers.
Specifically, our results showed that active social media,
more in-depth documentation, clear methods to contact
developers, and software health metrics [metrics related to
how often the software is tested, developed, etc (Srivastava
and Schumann 2011)] appear to enhance mentions in papers.

The infrastructure described in Table 4 and Supplemental
Note S3 could enable more comprehensive metrics about
insights regarding software usage and impact. Funders and
developers should consider these elements when considering
the impact and new directions for a project.

4 Discussion
With new metrics collected through the software infrastruc
ture described in Table 4 comes a new host of challenges that
require guidance. Here, we layout how the metrics collected
from the infrastructure discussed in the previous section
should be handled appropriately. The following are guidance
based on the composite experience of the authors:

4.1 Successful evaluations are anchored by an
understanding of the intended use of the software
The intended goal or purpose of the scientific software should
inform how the software is evaluated (Basili et al. 1994).
Computational tools are designed to support well-defined

Table 3. Scientific tools and resources evaluated.

Type Description Count Percentage

Plug-in/extension These tools are plug-in or extension software that adds func
tionality to other software

2 4.5

Jupyter/Python These tools are scripts written in Python or Jypyter Notebooks 5 11.4
Database/Ontology These tools provide users access to data or standards 5 11.4
Computing platforms These tools allow users to upload data and perform analysis on

a cloud or server
5 11.4

Web-based tools These tools are hosted on a website where users can access the
tool and use it

6 13.6

Desktop applications/command-
line tools

These tools require users to download the tool to their com
puter or server, desktop applications may or may not require
command-line interactions, while command-line tools do

9 20.5

R packages Software written in the R programming language 12 27.3
Total NA 44 100

Here, we show the variety among the 44 ITCR and CTD2 scientific research tools/resources evaluated for various characteristics by manual inspection for
infrastructure used to support software evaluation metrics beyond software paper citations.

4 Afiaz et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/8/btae469/7721930 by guest on 26 January 2026

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae469#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae469#supplementary-data
https://hutchdatascience.org/ITCR_Metrics_manuscript_website/
https://hutchdatascience.org/ITCR_Metrics_manuscript_website/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae469#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae469#supplementary-data

goals often called use cases (Gamma et al. 1995) for specific
sets of users called personas (Cooper 2004). Efforts to evalu
ate the impact of tools should be guided by a clear under
standing of these, use cases and personas to assess how well
the tools meet the intended goals and for all intended users.

4.2 Metric selection should be hypothesis driven
Collecting an exhaustive amount of user data before selecting
metrics can increase the risk that metrics are selected in a bi
ased manner. This can lead to picking metrics that look good
but are not necessarily as meaningful to the intended usage of
the tool. To mitigate this, metrics can be selected ahead of time
based on a specific hypothesis to ultimately evaluate how well
the software supports its intended goals (Mullen 2020).

4.3 No single evaluation method works for every
type of software
No individual scheme for collecting metrics fits every type of soft
ware tool. The meaning of a set of metrics may differ across con
texts. For example, the location of a tool (e.g. on the web or
downloaded) can influence user access to software versions and
how one might collect metrics. For a web-based application,
users will rarely have access to older versions. Thus, developers
can add version updates and collect metrics with clarity about

how usage changed. For locally run tools, users may be using
older, previously-downloaded versions. Additionally, tools that
are installed on institutional servers have much smaller installa
tion counts than those installed on individual computers. No one
metric is one size fits all and each software tool must be thought
fully planned out for how it should be evaluated.

4.4 Metrics require interpretation
Metric interpretation is rarely straightforward. A spike may
correspond to a workshop using the tool or a recent publica
tion citing the tool. Negative trends may indicate a break in
the academic calendar, holidays, down time of a host server,
or software bugs. It is also important to avoid comparisons
between metrics for tools with different users and contexts.

Total unique downloads might indicate software popular
ity, but does not tell us whether users found it useful. Instead,
metrics about returned usage by the same users or the number
of launches of the software over a certain predefined session
time threshold may better evaluate actual usage. For tools
that offer access or analyses of different data types, one may
want to parse usage by data types to evaluate how useful the
tool appears to support different kinds of users. Specific
measures can provide a common basis comparing versions
and potentially against other similar software.

Figure 1. Aspects of software infrastructure appear to be associated with a larger number of published manuscripts from users describing usage of the
software in the SoftwareKG-PMC database. The X-axis indicates the age of the software by showing the year that it was released. The Y-axis indicates
the log of the total number of papers that describe usage of the software in the SoftwareKG-PMC database. See Supplementary material and our
website for more information.

Best practices to evaluate the impact of biomedical research software 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/8/btae469/7721930 by guest on 26 January 2026

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae469#supplementary-data

Table 4. Software infrastructure can enable the capture of valuable metrics for evaluating engagement and impact.

Elements Options Tools to enable met
ric collection

Possible enabled metrics Considerations

Web presence Web-based tool • Cronitor for tools using
cron job scheduling
(Peters 2009))

• Google Analytics

• Identify where your
tool is being used

• Possibly identify what
data are being used

May need to consider pri
vacy restrictions for
tracking IP addresses

Documentation website • Google Analytics • Counts of page views
and scrolls

Pages with more views
may identify widely used
features or confus
ing aspects

Citability Provide a way to cite such
as a direct software DOI
(Fenner 2018), as well as
publishing software
manuscripts and infor
mation on how to cite,
can help people to cite
your software

• To create DOIs:
Zenodo, Dryad,
Synapse, and Figshare

• To track DOIs:
Altmetric

• Total citation counts
• Counts of citations by

journals of differ
ent fields

Semantic Scholar provides
reports that indicate
where citations have oc
curred within scientific
articles. Direct DOIs for
software (in addition to
software manuscripts) is
a useful and recognized
method for allowing
others to cite software,
especially when manu
scripts are not yet pub
lished. See Smith et al.
(2016) for best practices.
Not all DOI managers
are created equally and
some have more verifica
tion processes (Amorim
et al. 2015)

Contact Feedback mechanisms • GitHub issue templates
• Surveys

• User feedback count
• Addressed user feed

back count

Often users will only pro
vide feedback if some
thing is broken.
Depending on the tool,
many users may not be
comfortable with
GitHub Issues

Discussion forums • Discourse
• Biostar (Parnell

et al. 2011)
• Bioinformatics

Stack Exchange
• Google Groups

• Metrics based on user
engagements and an
swered questions

Forums can illustrate the
amount of community
activity with a particular
tool (Parnell et al. 2011,
Howison et al. 2015).
They can also save time
for development as users
help each other instead
of developers answering
individual emails for re
peat problems (Prli�c and
Procter 2012). A code of
conduct can help create
a supportive community

Newsletter emails • Mailchimp
• HubSpot

• Count of newslet
ter openings

• Count of link clicks
• Count of unsubscribers

Newsletters can help in
form users about
new features

Usability testing • Observe a few people use
the tool

• Discussion forums

• Zoom screen sharing
and recording

• Discussion
Forums (above)

• Qualitative information
about how users inter
act with your software

Even low numbers of us
ability interviews (3) can
yield fruitful lessons that
can be paired with other
metrics to guide develop
ment. Forums that pro
vide Q&A can identify
usability issues and bugs
(Howison et al. 2015,
Patrick 2020)

Workshops • Online or in-person
• Basics or new features

• Attendees can participate
in surveys

• Quantity, duration, and
attendance at work
shops are metrics that
can be reported to fund
ing agencies

Recordings can be posted
on social media (for ad
ditional metrics).

(continued)

6 Afiaz et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/8/btae469/7721930 by guest on 26 January 2026

4.5 Metrics of best practices provide indicators of
software health
Tracking adherence to best practices of software engineering
can be a useful way to assess software project health
Srivastava and Schumann (2011), including the use of version
control systems, high coverage of code with testing, and use
of automated or continuous integration. None of these meas
ures of project health are perfect (and can be done poorly)
but can collectively indicate software health. Including
badges for such indicators on code repositories and websites
can give users and others confidence. Some software pack
ages can help automatically assess package health like the
riskmetric package (https://pharmar.github.io/riskmetric/) for
evaluation of R packages (R Validation Hub et al. 2024).
Additional detail on these topics, can be found in The
Pragmatic Programmer(Thomas and Hunt 2019). See
Table 5 and Supplemental Note S4 for suggestions.

4.6 Metrics related to software quality and
reusability could reassure users and funders
Software reusability metrics have been suggested to enable
better discernment of the capacity for code to be reused in
other contexts. These metrics can also evaluate if code is writ
ten to be more resilient over time to dependency changes and
other maintenance challenges. One example would be the de
gree to which aspects of the software are independent of one
another (Mehboob et al. 2021). As research funders start to
value software maintenance more, metrics related to resil
ience and reusability may become more valuable. Other simi
lar metrics related to maintainability have been used in the
software community for some time relying on metrics such as
the number of code comments, lines of code, or code com
plexity metrics (Wang 2006), but open source software proj
ects with community contributors can make aspects related
software maintainability a challenge (Oman and Hagemeister
1994, Welker 2001, Ganpati et al. 2012).

5 Challenges and nuances
Here, we outline a number of challenges and nuances associ
ated with evaluating metrics for software usage and impact.

5.1 Distorted metrics
Projects like the ITCR-funded Bioconductor (Huber et al.
2015), with a large variety of software packages, offer an op
portunity to assess distortion of metrics by evaluating how
different packages are used over time, revealing important
nuances (see Table 6). Overall major themes seen include, ac
cidental usage by scripts that accidentally loop through
downloading a piece of software many times, usage of soft
ware to support other software for technical reasons, as well
as unexpected patterns of persistent use after a tool is theoret
ically no longer as useful. This is believed to be due to down
loads on servers using lists of historically typically used
packages. Finally, background levels of usage with low levels
of downloads even for tools that are no longer supported.

5.2 Clinical data challenges
Clinical data often contain protected health information
(PHI). Thus, the number of individuals that have access to
the data is generally smaller. Many tools containing clinical
data are also run at an enterprise level (such as the ITCR-
funded tool, EMERSE), meaning they are installed only one
time by system administrators and accounts are provisioned
to users. Thus, counting installations does not represent the
overall use. Further, security mechanisms to protect clinical
data inhibit developers from accessing the installed systems
themselves. Ultimately, due to downloads typically being at
an institutional level for clinical tools, metrics around soft
ware downloads underestimate their impact. It would not be
realistic to compare the usage metrics of such tools to more
widely available and accessible tools.

5.3 Goodhart’s law
Goodhart’s law states that “every measure which becomes a
target becomes a bad measure” (Hoskin 1996). For example,
h-indices (the number of papers an author has with that
many or more citations) are used to assess an author’s im
pact. As the h-index grew in popularity, the number of
researchers included as coauthors, the number of citations
per paper, and the fraction of self-citations increased, each
leading to an increased h-index. Although metrics could be
used to bring about best practices for binary outcomes (i.e.
public deposition of code), for more quantitative metrics (e.g.
number of downloads) the results could easily become

Table 4. (continued)

Elements Options Tools to enable met
ric collection

Possible enabled metrics Considerations

Social media • YouTube videos
• Twitter/Mastodon
• Instagram
• LinkedIn

• Hootsuite—social me
dia management

• Engagement metrics
(video watch counts,
likes, etc.)

Pairing social media met
rics with software en
gagement metrics can
determine if outreach
strategies are successful

Reviews Review forum • SourceForge
• GitHub

• Stars
• Watchers
• Forks
• Number of reviews

Positive reviews, active
community participa
tion, and code review
can be reassuring to fun
ders and users alike

Note that there are other helpful tools to enable metric collection. These are simply examples based on the experience of software developers funded by
ITCR, e.g. the developers of QIIME 2 (Bolyen et al. 2019) found metrics from workshops, forums, and other forms of outreach valuable for evaluating
community uptake and user experience. Altmetric at https://zenodo.org/, Google Analytics at https://docs.github.com/en/actions, Bioinformatics Stack
Exchange at ttps://bioinformatics.stackexchange.com, Cronitor at https://cronitor.io, Discourse at https://www.discourse.org/, Dryad at https://datadryad.
org/, Figshare at https://figshare.com, Google Groups at https://support.google.com/groups, Hootsuite at https://www.hootsuite.com/, HubSpot at https://
www.hubspot.com, Mailchimp at https://mailchimp.com/, Semantic Scholar at https://www.semanticscholar.org/, Singularity at https://sylabs.io/,
Sourceforge at https://sourceforge.net/, Synapse at https://www.synapse.org/, and Zenodo at https://zenodo.org/.

Best practices to evaluate the impact of biomedical research software 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/8/btae469/7721930 by guest on 26 January 2026

https://pharmar.github.io/riskmetric/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae469#supplementary-data
https://zenodo.org/
https://docs.github.com/en/actions
http://ttps//bioinformatics.stackexchange.com
https://cronitor.io
https://www.discourse.org/
https://datadryad.org/
https://datadryad.org/
https://figshare.com
https://support.google.com/groups
https://www.hootsuite.com/
https://www.hubspot.com
https://www.hubspot.com
https://mailchimp.com/
https://www.semanticscholar.org/
https://sylabs.io/
https://sourceforge.net/
https://www.synapse.org/
https://zenodo.org/

meaningless. The impact behind this concept cannot be en
tirely avoided because of fundamentals of human behaviour
but one way to minimize this effect is to continue to evaluate
metrics over time, to consider if our metrics are truly measur
ing what we think they are, to consider if our metrics are ac
tually fair to a diverse range of projects, and to consider new
metrics as needed (Fire and Guestrin 2019). Funding agencies

need to consider how each type of tool is context-dependent,
and that impact should be compared between similar classes
of tools.

5.4 Security, legal and ethical considerations
Often with phone-home software (the collection of informa
tion from the computers of users that downloaded or

Table 5. Software health infrastructure.

Infrastructure Options Tools to enable met
ric collection

Possible enabled metrics Significance for users, developers,
and funders

Version control Without
automation

• Git/GitHub (The insight
tab and API allow for
systematic met
ric collection)

• Git/GitLab
• BitBucket

• Commit frequency (how of
ten code is updated)

• Date of the most re
cent commit

• Number of active
contributors

• Software versions updates

Commit frequency allows assessment of how
actively the software is being maintained.
The number of contributors can indicate
sustainability. One single contributor may
pose a sustainability risk. Version infor
mation can enable users to determine if
they are using the most up-to-date version.
Developers can utilize these metrics to de
termine which projects need more atten
tion and to garner support from funding
agencies to prove that they have done a
thorough job developing and maintaining
the software

With automations • GitHub actions
• Travis CI
• CircleCI

• Current build status (if the
software built without errors)

Continuous integration and continuous de
ployment or delivery are terms to describe
a situation where every time code is modi
fied, the full code product is automatically
rebuilt or compiled. Continuous deploy
ment or delivery describes the automatic
release of this new code to users. Delivery
in this case describes situations where the
software requires more manual releases
while deployment is seamless. GitHub
Actions can also help with metric collec
tion from the GitHub API. Developers can
use build status to understand if the soft
ware is performing appropriately. This
can help funders to recognize how well a
tool is working and being developed
and maintained

Testing Automated testing • GitHub Actions
• Travis CI
• CircleCI

• Test code coverage (the frac
tion of lines of code in the
project that are covered
by tests)

Unit tests check individual pieces of code;
component and integration tests check
that pieces of code behave correctly to
gether; acceptance tests check the overall
software behaviour. Achieving in-depth
test coverage requires careful software de
sign. Test coverage does not evaluate the
quality of the test cases or assertions. Test
metrics can help users, developers, and
funders understand how thoroughly and
robustly the code has been assessed for ab
errant behaviour

Licensing A variety of
licenses exist to
allow or disal
low reuse and
to require
attribution

• Creative commons • Possible quantification of re
use of your software code

Clearly indicating if and how people can re
use your code will make them more com
fortable to do so. Determining when this
is done can be a challenge, but requiring
attribution makes this more feasible. This
can indicate to users and funders if the
developers have carefully considered the
downstream use of their code outside of
their own software. This can better enable
additional tools to be built using your
code and can help you to track usage if
you use a license that requires attribution
for reused coded

Infrastructure that enables collecting metrics about software health (meaning how robustly software was built and maintained) (Srivastava and Schumann
2011), can reassure users and funders. Bitbucket at https://bitbucket.org/product, CircleCI at https://circleci.com/docs, Creative Commons at https://
creativecommons.org/licenses/, GitLab at https://about.gitlab.com/, GitHub at https://github.org, GitHub actions at https://docs.github.com/en/actions, and
Travis CI at https://config.travis-ci.com/.

8 Afiaz et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/8/btae469/7721930 by guest on 26 January 2026

https://bitbucket.org/product
https://circleci.com/docs
https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
https://about.gitlab.com/
https://github.org
https://docs.github.com/en/actions
https://config.travis-ci.com/

installed a particular software) or web-based analytics, users
are tracked for specific usage. Occasionally software develop
ers will notify users that they are being tracked, however this is
often not required. The General Data Protection Regulation
(GDPR), implemented in 2018, requires that organizations
anywhere in the world respect certain data collection obliga
tions regarding people in the European Union. It is intended to
protect the data privacy of individuals and mostly guards
against the collection of identifiable personal information.
Data collection of software usage needs to be mindful of the
GDPR and any other international regulations. As science is
particularly an international pursuit, often users may reside
outside the country where the tool was developed.

One way to mitigate this is to let users choose if they wish
to be tracked. Developers can also design tracking to be more
anonymous. A genome visualization tool may track the num
ber of unique uses, but not track what part of the genome
was visualized [as is the case for the UCSC Xena Genome
Browser (Goldman et al. 2020)]. Google Analytics (https://
marketingplatform.google.com/about/analytics/) provides
support to mask unique IP addresses of visitors to a website
tracked by the system. Ethical and legal consequences should
be considered when designing or implementing tracking sys
tems of software (see Supplemental Note S5 for more
information).

5.5 Conclusions
Our assessments indicate that cancer software developers of
the ITCR find it difficult to find the time or funding to evalu
ate the impact and usage of their software using metrics, de
spite their awareness of the benefits. Many have found such
evaluations useful for driving future development and obtain
ing additional funding. A sizable portion (27%) of those

surveyed self-reported as not knowing what methods to use
for such evaluations. We also find from our manual evalua
tion of a subset of scientific software tools that tools appear
to be more widely used when developers provide deeper doc
umentation, badges about software health metrics, and more
in-depth contact information, as well as having a Twitter
presence. It is not clear why this is. It may be that those who
have the time and support to more thoroughly document and
advertise their tools may also have more resources to devel
oper the tool itself, lending to wider usage. However, it may
also be that a social media presence brings new users to tools
and that the other infrastructure (badges, deeper documenta
tion, etc.) help new users to trust software. Further studies
are necessary to understand these patterns. However, it sug
gests that supporting developers to spend more time on such
elements could drive further usage of existing tools. We hope
that funding agencies will value supporting developers to
evaluate, promote, and maintain existing tools in addition to
the current typical model for most agencies to prioritize the
creation of new tools. A recent article (Merow et al. 2023)
suggested that a new type of manuscript for software updates
may help the field to better reward maintenance of existing
software. We argue that inclusion of evaluations of software
impact and usage could also be incorporated into such a
model for software-related manuscripts.

While metric collection beyond traditional citations is only
one piece of the software development workflow, we feel that
it has been underappreciated by funding institutions and pro
motion committees. In addition, while common metrics may
be valuable for comparisons of similar types of tools, other
types of metrics may give more insight about the downstream
impact of a tool in terms of what development and advance
ments in the field that the software supported. For example,

Table 6. Distorted metrics.

Distortion Example

Accidental usage Occasionally scripts used on servers may inadvertently download a package repeatedly and rapidly hun
dreds to thousands of times, resulting in distorted download metrics that are not representative of real
usage. Unique IP download information is useful to distinguish between one user downloading many
times versus many users a few times. Given privacy concerns, an alternative solution could involve track
ing the timing and approximate location of downloads with a threshold for what would be more than
expected as maximum real usage, like a group of people following a tutorial

Background usage There is a baseline background level of downloads across all packages in Bioconductor (including those
that are no longer supported). Thus, if a new package has 250 downloads in the first year this may seem
like a successful number, but actually it is similar to background levels

Technical versus research usage It can be difficult to discern if the usage of a package is for scientific research itself or supporting the imple
mentation of other software. While both are arguably valuable, distinguishing between these motiva
tions can help us understand a particular software’s impact in a field. For example, the S4Vectors
package (10.18129/B9.bioc.S4Vectors) (Pag�es et al. 2022) is an infrastructure package used by many
other packages for technical and non-biological reasons and is therefore not often directly downloaded
by end-users. This package is also included in automated checks for other Bioconductor packages using
GitHub actions. Another example of support implementation is in the context of container image use.
Containerization software [like Docker (https://www.docker.com/) and Singularity] often install soft
ware packages for individual environments that could inflate usage metrics statistics. For instance, a user
who is actively developing a container may re-trigger the build and thus installation of associated soft
ware many times over the course of a project

Usage persistence The affy package (10.18129/B9.bioc.affy) (Gautier et al. 2004) was one of the early packages for microar
ray analysis, a technology that has largely been replaced by newer technologies, which can be seen by
the rate of microarray submissions to GEO overtime. However, despite the field transitioning away
from microarray methods (Mantione et al. 2014), the package was downloaded in 2021 at rates that
doubled the rates in 2011. The authors speculate that this could be due to people historically requesting
that affy be installed on servers and that this is just persisting, or perhaps it is being used for preliminary
hypothesis testing using existing micrarray data, or perhaps it is being used because other microarray
packages are no longer supported

Here, we provide more in-depth information about metric distortion themes identified evaluating tools in Bioconductor (which is ITCR-funded). GEO ¼
Gene Expression Omnibus.

Best practices to evaluate the impact of biomedical research software 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/8/btae469/7721930 by guest on 26 January 2026

https://marketingplatform.google.com/about/analytics/
https://marketingplatform.google.com/about/analytics/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae469#supplementary-data
https://www.docker.com/

perhaps we should consider how much a software tool
inspires the development of other tools, the value of the
papers that cite a tool (perhaps by citation rate, measures of
innovation, or measures of clinical impact, such as clinical tri
als) Certainly as scientific software continues to be critical for
scientific and medical advancement, we should continue to
think beyond the software citation model and consider the
infrastructure and metrics we have discussed here as we
determine how to support scientific software developers in
the future.

Acknowledgements
The authors thank the anonymous reviewers for their
valuable suggestions. This work was funded by the National
Cancer Institute (NCI) of the National Institutes of
Health (NIH), under award numbers UE5CA254170,
U01CA242871, U24CA248265, as part of the Informatics
Technology for Cancer Research (ITCR) program, as well as
by the National Human Genome Research Institute under
award number U54HG012517. The content of this publica
tion is solely the responsibility of the authors and does not
represent the official views of the NIH. We would also like to
thank the survey participants who participated in our survey.
S.P. and S.B. did the bulk of their contributions at the
University of Pennsylvania, but have since moved to Indiana
University School of Medicine.

Author contributions
Awan Afiaz and Carrie Wright performed the analyses.
Andrey A. Ivanov manually gathered data about tool infra
structure. John Chamberlin gathered data about tool usage.
David Hanauer, Brian Haas, Spyridon Bakas, Harry
Hochheiser, Guilherme Del Fiol, Ava M. Hoffman, Richard
L. Bradshaw, and Levi Waldron assisted Carrie Wright with
the development of the survey. All authors helped review the
manuscript and were involved in discussions that contributed
to the content and the overall direction of the data analysis,
especially Mary J. Goldman, Martin Morgan, Michael Reich,
who presented about their experiences in software impact
evaluation. Jeffrey T. Leek had the idea of evaluating possible
associations of software usage with software infrastructure.
Carrie Wright, Candace L. Savonen, David Hanauer, Mary J.
Goldman, Awan Afiaz, John Chamberlin, Alexander Getka,
Aaron Holmes, Sarthak Pati, Dan Knight, Spyridon Bakas, J.
Gregory Caporaso, Patrick D. Schloss, Guilherme Del Fiol,
Harry Hochheiser, James A. Eddy, Jake Albrecht, Andrey
Fedorov, and Levi Waldron contributed writing to the paper.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
P.C.B. sits on the Scientific Advisory Boards of Sage
Bionetworks, Intersect Diagnostics Inc. and BioSymetrics Inc.
M.J.G. and J.G.C. act as consultants for the Fred Hutch as
part of an initiative called the ITCR Training Network
(www.itcrtraining.org). C.W. and C.L.S. receive royalties for
some of the training materials they have written for the ITCR
Training Network (www.itcrtraining.org).

Funding
This work was funded by the National Cancer Institute (NCI)
of the National Institutes of Health (NIH), under award num
bers UE5CA254170, U01CA242871, U24CA248265, as part
of the Informatics Technology for Cancer Research (ITCR)
program, as well as by the National Human Genome Research
Institute under award number U54HG012517.

Data availability
More information about the analysis, as well as access to all
data and code is available at https://hutchdatascience.org/
ITCR_Metrics_manuscript_website/ and https://github.com/
fhdsl/ITCR_Metrics_manuscript_website.

References
Aksoy BA, Dan�c�ık V, Smith K et al. CTD2 dashboard: a searchable web

interface to connect validated results from the Cancer Target
Discovery and Development Network. Database (Oxford) 2017;
2017:bax054. https://doi.org/10.1093/database/bax054

Amorim RC, Aguiar Castro J, Silva JRD et al. A comparative study of
platforms for research data management: interoperability, metadata
capabilities and integration potential. In: Alvaro R, Ana Maria C,
Sandra C, Luis Paulo R (eds.), New Contributions in Information
Systems and Technologies, Advances in Intelligent Systems and
Computing, Vol. 353. Cham: Springer International Publishing,
2015, 101–111. https://doi.org/10.1007/978-3-319-16486-1_10

Barker M, Chue Hong NP, van Eijnatten J et al. Amsterdam
Declaration on Funding Research Software Sustainability. Zenodo,
2023. https://doi.org/10.5281/zenodo.7740084

Basili VR, Caldiera G, Rombach DH. The Goal Question Metric
Approach, Volume I. United Kingdom: John Wiley & Sons, 1994.

Begany GM, Martin EG, Yuan XJ. Open government data portals: pre
dictors of site engagement among early users of health data NY.
Gov Inform Quart 2021;38:101614.

Bitzer J, Schrettl W, Schr€oder PJH. Intrinsic motivation in open source
software development. J Comp Econ 2007;35:160–9. https://doi.
org/10.1016/j.jce.2006.10.001

Bolyen E, Rideout JR, Dillon MR et al. Reproducible, interactive, scal
able and extensible microbiome data science using QIIME 2. Nat
Biotechnol 2019;37:852–7. https://doi.org/10.1038/s41587-019-
0209-9

Chang H-Y, Colby SM, Du X et al. A practical guide to metabolomics
software development. Anal Chem 2021;93:1912–23.

Cooper A. Inmates Are Running the Asylum, The: Why High-Tech
Products Drive Us Crazy and How to Restore the Sanity. 2nd edn.
Carmel, Indiana, United States: Sams, 2004.

Du C, Cohoon J, Lopez P et al. Softcite dataset: a dataset of software
mentions in biomedical and economic research publications. J Assoc
Inf Sci Technol 2021;72:870–84. https://doi.org/10.1002/asi.24454

Eisty NU, Thiruvathukal GK, Carver JC. A survey of software metric
use in research software development. In: 2018 IEEE 14th
International Conference on e-Science (e-Science), Amsterdam, the
Netherlands. Piscataway, NJ, United States: IEEE, 2018, 212–222.
https://doi.org/10.1109/eScience.2018.00036

Essential Open Source Software for Science. Chan Zuckerberg
Initiative, November 2019. https://chanzuckerberg.com/rfa/essen
tial-open-source-software-for-science/.

Fenner M. DOI Registrations for Software. 2018. https://datacite.org/
blog/doi-registrations-software/

Fire M, Guestrin C. Over-optimization of academic publishing metrics:
observing Goodhart’s Law in action. GigaScience 2019;8:giz053.
https://doi.org/10.1093/gigascience/giz053

Gamma E, Helm R, Johnson R et al. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston, MA, United States:
Addison-Wesley, 1995.

10 Afiaz et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/8/btae469/7721930 by guest on 26 January 2026

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae469#supplementary-data
http://www.itcrtraining.org
https://www.itcrtraining.org
https://hutchdatascience.org/ITCR_Metrics_manuscript_website/
https://hutchdatascience.org/ITCR_Metrics_manuscript_website/
https://github.com/fhdsl/ITCR_Metrics_manuscript_website
https://github.com/fhdsl/ITCR_Metrics_manuscript_website
https://doi.org/10.1093/database/bax054
https://doi.org/10.1007/978-3-319-16486-1_10
https://doi.org/10.5281/zenodo.7740084
https://doi.org/10.1016/j.jce.2006.10.001
https://doi.org/10.1016/j.jce.2006.10.001
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1002/asi.24454
https://doi.org/10.1109/eScience.2018.00036
https://chanzuckerberg.com/rfa/essential-open-source-software-for-science/
https://chanzuckerberg.com/rfa/essential-open-source-software-for-science/
https://datacite.org/blog/doi-registrations-software/
https://datacite.org/blog/doi-registrations-software/
https://doi.org/10.1093/gigascience/giz053

Ganpati A, Kalia A, Singh H. A comparative study of maintainability
index of open source software. Int J Emerg Technol Adv Eng 2012;
2(10):228–30.

Goldman MJ, Craft B, Hastie M et al. Visualizing and interpreting can
cer genomics data via the Xena platform. Nat Biotechnol 2020;38:
675–8. https://doi.org/10.1038/s41587-020-0546-8

Hanauer DA, Mei Q, Law J et al. Supporting information retrieval
from electronic health records: a report of University of Michigan’s
nine-year experience in developing and using the Electronic Medical
Record Search Engine (EMERSE). J Biomed Inform 2015;55:
290–300. https://doi.org/10.1016/j.jbi.2015.05.003

Hoskin K. The “awful idea of accountability”: inscribing people into
the measurement of objects. In: R Munro, J Mouritsen (eds.),
Accountability: Power, Ethos and the Technologies of Managing.
London: International Thomson Business Press, 1996.

Howison J, Bullard J. Software in the scientific literature: problems
with seeing, finding, and using software mentioned in the biology lit
erature. J Assoc Inf Sci Technol 2016;67:2137–55. https://doi.org/
10.1002/asi.23538

Howison J, Deelman E, McLennan MJ et al. Understanding the scien
tific software ecosystem and its impact: current and future measures.
Res Eval 2015;24:454–70. https://doi.org/10.1093/reseval/rvv014

Huber W, Carey VJ, Gentleman R et al. Orchestrating high-throughput
genomic analysis with Bioconductor. Nat Methods 2015;
12:115–21.

Hunter-Zinck H, de Siqueira AF, V�asquez VN et al. Ten simple rules on
writing clean and reliable open-source scientific software. PLoS
Comput Biol 2021;17:e1009481. https://doi.org/10.1371/journal.
pcbi.1009481

Kibbe W, Klemm J, Quackenbush J. Cancer informatics: new tools for
a data-driven age in cancer research. Cancer Res 2017;77:e1–2.
https://doi.org/10.1158/0008-5472.CAN-17-2212

Kr€uger F, Schindler D. A literature review on methods for the extraction
of usage statements of software and data. Comput Sci Eng 2020;22:
26–38. https://doi.org/10.1109/MCSE.2019.2943847

Kumar R, Hasteer N. Evaluating usability of a web application: a com
parative analysis of open-source tools. In: 2017 2nd International
Conference on Communication and Electronics Systems (ICCES).
2017, 350–4. https://doi.org/10.1109/CESYS.2017.8321296

Gautier L, Cope L, Bolstad BM et al. affy—analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics 2004;20:307–15.
https://doi.org/10.1093/bioinformatics/btg405

Lenarduzzi V, Taibi D, Tosi D et al. Open source software evaluation,
selection, and adoption: a systematic literature review. In: 2020
46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Portoroz, Sloveni, August 2020,
437–44, Piscataway, NJ, United States: IEEE. https://doi.org/10.
1109/SEAA51224.2020.00076

Mantione KJ, Kream RM, Kuzelova H et al. Comparing bioinformatic
gene expression profiling methods: microarray and RNA-Seq. Med
Sci Monit Basic Res 2014;20:138–42. https://doi.org/10.12659/
MSMBR.892101

Mehboob B, Chong CY, Peck Lee S et al. Reusability affecting factors
and software metrics for reusability: a systematic literature review.
Softw Pract Exp 2021;51:1416–58. https://doi.org/10.1002/
spe.2961

Merow C, Boyle B, Enquist BJ et al. Better incentives are needed to re
ward academic software development. Nat Ecol Evol 2023;7:
626–7. https://doi.org/10.1038/s41559-023-02008-w

Mullen C. Hypothesis-Driven Development. MIT Lincoln Laboratory
2020, https://www.ll.mit.edu/sites/default/files/project/doc/2020-
07/Hypothesis-Driven%20Development_v4.pdf.

Oman P, Hagemeister J. Construction and testing of polynomials pre
dicting software maintainability. J Syst Softw 1994;24:251–66.
https://doi.org/10.1016/0164-1212(94)90067-1

Pag�es H, Lawrence M, Aboyoun P. S4Vectors: foundation of vector-
like and list-like containers in Bioconductor. R package version

0.34.0. 2022, https://bioconductor.org/packages/release/bioc/html/
S4Vectors.html.

Parnell LD, Lindenbaum P, Shameer K et al. BioStar: an online question
& answer resource for the bioinformatics community. PLoS
Comput Biol 2011;7:e1002216. https://doi.org/10.1371/journal.
pcbi1002216

Patrick MT. Exploring software reusability metrics with Q&A forum
data. J Syst Softw 2020;168:110652.

Peters R. cron. In: Ron P (ed.), Expert Shell Scripting. Berkeley, CA: Apress,
2009, 81–85. https://doi.org/10.1007/978-1-4302-1842-5_12

Prli�c A, Procter JB. Ten simple rules for the open development of scien
tific software. PLoS Comput Biol 2012;8:e1002802. https://doi.org/
10.1371/journal.pcbi.1002802

R Validation Hub, D Kelkhoff, M Gotti et al. riskmetric: Risk Metrics
to Evaluating R Packages. R package version 0.2.4.9000. 2024,
https://cran.r-project.org/web/packages/riskmetric/index.html.

Ramakrishnan L, Gunter D. Ten principles for creating usable software for
science. In: 2017 IEEE 13th International Conference on e-Science (e-
Science). 2017, 210–8. https://doi.org/10.1109/eScience.2017.34

Reich M, Tabor T, Liefeld T et al. The GenePattern notebook environ
ment. Cell Syst 2017;5:149–51.e1. https://doi.org/10.1016/j.cels.
2017.07.003

Rossi B, Russo B, Succi G. Download patterns and releases in open
source software projects: a perfect symbiosis? In: Open Source
Software: New Horizons: 6th International IFIP WG 2.13
Conference on Open Source Systems, OSS 2010, Notre Dame, IN,
USA, May 30–June 2, 2010. Proceedings 6. Springer, 2010, 252–67.

Sayyed-Alikhani A, Chica M, Mohammadi A. An agent-based system
for modeling users’ acquisition and retention in startup apps. Exp
Syst Appl 2021;176:114861.

Siepel A. Challenges in funding and developing genomic software: roots
and remedies. Genome Biol 2019;20:147. https://doi.org/10.1186/
s13059-019-1763-7

Smith AM, Katz DS, Niemeyer KE; FORCE11 Software Citation
Working Group. Software citation principles. PeerJ Comput Sci
2016;2:e86. https://doi.org/10.7717/peerj-cs.86

Srivastava AN, Schumann J. The case for software health management.
In: 2011 IEEE Fourth International Conference on Space Mission
Challenges for Information Technology. Palo Alto, CA, United
States, August 2011, 3–9. Piscataway, NJ, United States:
Innovations in Systems and Software Engineering, IEEE. https://doi.
org/10.1109/SMC-IT.2011.14

The Galaxy Community. The Galaxy platform for accessible, reproduc
ible and collaborative biomedical analyses: 2022 update. Nucleic
Acids Res 2022;50:W345–51. https://doi.org/10.1093/nar/gkac247

Thelwall M, Kousha K. Academic software downloads from google
code: useful usage indicators? Inform Res 2016;21:709.

Thomas D, Hunt A. The Pragmatic Programmer, 20th Anniversary
Edition. Addison-Wesley, 2019.

Waller LA. Documenting and evaluating data science contributions in aca
demic promotion in departments of statistics and biostatistics. Am Stat
2018;72:11–9. https://doi.org/10.1080/00031305.2017.1375988

Wang Y. Cognitive complexity of software and its measurement. In:
2006 5th IEEE International Conference on Cognitive Informatics,
Beijing, China Vol. 1. July 2006, 226–35. Piscataway, NJ, United
States: IEEE. https://doi.org/10.1109/COGINF.2006.365701

Warner JL, Klemm JD. Informatics tools for cancer research and care:
bridging the gap between innovation and implementation. JCO Clin
Cancer Inform 2020;4:784–6. https://doi.org/10.1200/CCI.20.00086

Welker KD. Software maintainability index revisited. CrossTalk—J
Defense Softw Eng 2001:18–21.

Wratten L, Wilm A, G€oke J. Reproducible, scalable, and shareable
analysis pipelines with bioinformatics workflow managers. Nat
Methods 2021;18:1161–8. https://doi.org/10.1038/s41592-021-
01254-9

Zhao Y, Liang R, Chen X et al. Evaluation indicators for open-source
software: a review. Cybersecur 2021;4:1–24.

Best practices to evaluate the impact of biomedical research software 11

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/8/btae469/7721930 by guest on 26 January 2026

https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.1016/j.jbi.2015.05.003
https://doi.org/10.1002/asi.23538
https://doi.org/10.1002/asi.23538
https://doi.org/10.1093/reseval/rvv014
https://doi.org/10.1371/journal.pcbi.1009481
https://doi.org/10.1371/journal.pcbi.1009481
https://doi.org/10.1158/0008-5472.CAN-17-2212
https://doi.org/10.1109/MCSE.2019.2943847
https://doi.org/10.1109/CESYS.2017.8321296
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1109/SEAA51224.2020.00076
https://doi.org/10.1109/SEAA51224.2020.00076
https://doi.org/10.12659/MSMBR.892101
https://doi.org/10.12659/MSMBR.892101
https://doi.org/10.1002/spe.2961
https://doi.org/10.1002/spe.2961
https://doi.org/10.1038/s41559-023-02008-w
https://www.ll.mit.edu/sites/default/files/project/doc/2020-07/Hypothesis-Driven%20Development_v4.pdf
https://www.ll.mit.edu/sites/default/files/project/doc/2020-07/Hypothesis-Driven%20Development_v4.pdf
https://doi.org/10.1016/0164-1212(94)90067-1
https://bioconductor.org/packages/release/bioc/html/S4Vectors.html
https://bioconductor.org/packages/release/bioc/html/S4Vectors.html
https://doi.org/10.1371/journal.pcbi1002216
https://doi.org/10.1371/journal.pcbi1002216
https://doi.org/10.1007/978-1-4302-1842-5_12
https://doi.org/10.1371/journal.pcbi.1002802
https://doi.org/10.1371/journal.pcbi.1002802
https://cran.r-project.org/web/packages/riskmetric/index.html
https://doi.org/10.1109/eScience.2017.34
https://doi.org/10.1016/j.cels.2017.07.003
https://doi.org/10.1016/j.cels.2017.07.003
https://doi.org/10.1186/s13059-019-1763-7
https://doi.org/10.1186/s13059-019-1763-7
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.1109/SMC-IT.2011.14
https://doi.org/10.1109/SMC-IT.2011.14
https://doi.org/10.1093/nar/gkac247
https://doi.org/10.1080/00031305.2017.1375988
https://doi.org/10.1109/COGINF.2006.365701
https://doi.org/10.1200/CCI.20.00086
https://doi.org/10.1038/s41592-021-01254-9
https://doi.org/10.1038/s41592-021-01254-9

© The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–11
https://doi.org/10.1093/bioinformatics/btae469
Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/8/btae469/7721930 by guest on 26 January 2026

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	5 Challenges and nuances
	Acknowledgements
	Author contributions
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References

