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Abstract

Motivation: Software is vital for the advancement of biology and medicine. Impact evaluations of scientific software have primarily emphasized
traditional citation metrics of associated papers, despite these metrics inadequately capturing the dynamic picture of impact and despite chal-
lenges with improper citation.

Results: To understand how software developers evaluate their tools, we conducted a survey of participants in the Informatics Technology for Cancer
Research (ITCR) program funded by the National Cancer Institute (NCI). Ve found that although developers realize the value of more extensive metric col-
lection, they find a lack of funding and time hindering. We also investigated software among this cormmunity for how often infrastructure that supports
more nontraditional metrics were implemented and how this impacted rates of papers describing usage of the software. We found that infrastructure such
as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers
seemed to be associated with increased mention rates. Analysing more diverse metrics can enable developers to better understand user engagement, jus-
tify continued funding, identify novel use cases, pinpoint improvement areas, and ultimately amplify their software’s impact. Challenges are associated, in-
cluding distorted or misleading metrics, as well as ethical and security concerns. More attention to nuances involved in capturing impact across the spec-
trum of biomedical software is needed. For funders and developers, we outline guidance based on experience from our community. By considering how
we evaluate software, we can empower developers to create tools that more effectively accelerate biological and medical research progress.

Availability and implementation: More information about the analysis, as well as access to data and code is available at https://github.com/
fhdsl/ITCR_Metrics_manuscript_website.
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1 Introduction

Biomedical software has become a critical component of bio-
medical research and enabling major advancements of medi-
cine. Often such software is initially developed so that the
developers can use it themselves and then used by others for
research (Bitzer er al. 2007). However, the life span of bio-
medical software projects is often cut short because mainte-
nance and continued evaluation is not prioritized by funding
institutions or promotion committees (Prli¢ and Procter
2012). Ultimately the academic infrastructures built around
manuscripts are from a time before software and the internet
and result in an inefficient ecosystem that rewards new soft-
ware but does not invest in software that has already been
built. This revolving door ultimately undermines the impact
that software projects can have on biomedical research and
ultimately healthcare. Prioritizing metric collection beyond
citations can help funders, promotion committees, and devel-
opers to better understand the impact and challenges of soft-
ware projects (Waller 2018).

To understand current practices and challenges of software
developers, we performed a survey of participants in the
Informatics Technology for Cancer Research (ITCR) program
funded by the National Cancer Institute (NCI). We also manu-
ally investigated software among this community to assess
how often infrastructure that supports evaluations is imple-
mented and how this impacts rates of papers describing usage
of the software. We find that developers recognize the utility
of analysing software usage, but struggle to find the time or
funding for such analyses. Recognizing the significance of
comprehensive software metrics, and providing dedicated
funding for developers to robustly collect and analyse such
data, would enable biomedical software and the research it
supports to achieve drastically greater real-world impact.

1.1 Citations alone are not enough

Software with impact is not necessarily highly cited. A study
of 4971 academic biomedical and economics articles found
that software citations only included version information
28% of the time (Howison and Bullard 2016). Another study
evaluating 90 biology articles found that version information
was included only 27% of the time and URL information
only 17% of the time (Du et al. 2021). Specifically, among
ITCR-funded software examples, users may forget to cite a
tool for visualization, such as the UCSC Xena Genome
Browser (Goldman et al. 2020). Users might also forget to
cite tools used in initial phases of a project, such as EMERSE
(Electronic Medical Record Search Engine) (Hanauer ez al.
2015) which helps identify patient cohorts. Tools which pro-
vide access to other software may also not be cited. Examples
include Bioconductor (Huber et al. 2015), Gene Pattern
Notebook (Reich et al. 2017), and Galaxy (The Galaxy
Community 2022). Understanding system-level tool usage
may require looking at individual tools on these platforms.
Finally, researchers often only describe a tool without citing
it and can do so in unusual locations within manuscripts,
such as a figure legend.

Another challenge is that manuscripts for software are a
snapshot and do not reflect the evolving nature of the soft-
ware. Typically, it is much easier to publish manuscripts for
new software. However, researchers can save time if they can
continue working with tools they are already familiar with.

A new type of manuscript for software updates has been
proposed (Merow et al. 2023). This could reward developers
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who start working on software after the initial publication,
and provide new ways for funding agencies and others to bet-
ter recognize software maintenance.

1.2 Appropriate use of metrics is the way forward

Metrics beyond citations can be very powerful for continued
evaluation and improvements to software. Table 1 explains
the benefits of software evaluations for developers, including
identifing ways to optimize the tool, to guide future work, to
garner funding support, to enhance user commitment, and to
motivate community development. Citations alone are insuf-
ficient in capturing the dynamic nature of scientific software
usage and they are inadequate for helping guide developers to
improve their tools.

Evaluation metrics for the purpose of continued develop-
ment can include the number of new users, returning users,
and total downloads of the software, but the types of possible
metrics vary based on the type of tool and context (see
Table 2). These and other metrics can allow assessment of the
rate of establishment within a community. Proper metrics
should not only examine the software’s performance but assess
if motivations and goals of the users using the software are be-
ing met. Ideally metrics also help gather information about the
downstream impact of the tool on biomedical research.

Despite these strengths, developers and funders must un-
derstand challenges and nuance in interpreting these metrics.
Communities like CHAOSS (Community Health Analytics in
Open Source Software) have focused on the proper collec-
tion, evaluation, and standards for software metric collection
https://chaoss.community/. In an effort to have more expan-
sive metrics adopted by the biomedical research community,
we aim to provide guidance for evaluations of software im-
pact and engagement. We also discuss ethical considerations
and challenges of such evaluations that still require solutions.
The guidance presented here holds the potential for develop-
ers to improve the use and utility of their tools, improve their
chances of funding for future development, and ultimately
lead to the development of even more useful software to ad-
vance science and medicine (Wratten et al. 2021).

2 Materials and methods

We performed two analyses to get a sense of software evalua-
tion within the community of developers of the ITCR pro-
gram funded by the NCI. Our first surveyed developers to
better understand how they think about software evaluation.
Our second aimed to determine what infrastructure is often
implemented to support software evaluation and if such im-
plementation was associated with the frequency of papers de-
scribing usage of the software (see Supplemental Note S1).

In the first analysis, we surveyed 48 ITCR participants.
Limited time (68% of respondents) and funding (57%
respondents) were major barriers for performing software
impact evaluations (respondents could select multiple bar-
riers). Although a few funding mechanisms support the main-
tenance and analysis of software (as opposed to creation of
new software), such as the ITCR sustainment awards (Kibbe
et al. 2017, Warner and Klemm 2020), or the Essential Open
Source Software for Science program of the Chan Zuckerberg
Initiative (Science 2019), more funding for software sustain-
ability is needed compared to what is currently available.
Awareness of this need was also demonstrated by the recent
Declaration on Funding Research Software Sustainability by
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Table 1. Needs, goals, and benefits of software evaluation.

Need

Specific goal Benefit

Tool optimization

Tool development
& maintenance

Gain support

Gain user commitment

Improving workflows Identify unexpected usage
Identify code inefficiencies
Identify resource usage inefficiencies
Identify inadequate documentation
Identify mismatches with defaults and use

Improve performance Assess user wait times
Measure data volume
Improve usage Identify software errors

Identify what features are used and not used

Identify who the user-base is

Determine user-base diversity

Identify sources of other possible users

Determine what users’ expectations are

Determine if user expectations are appropriate

Evaluate success of outreach approaches
Improve implementation Identify barriers for adoption

Identify methods to support adaption

Identify use of out-dated versions

Improve usability Identify user errors
Identify if and how users are struggling
Guide future work Enumerate data types being used

motivate continued support

Discover opportunities for new features
Discover data needed to address user goals
Identify more appropriate resource allocation
Show evidence of impact Support future funding requests
(to maintain or develop new tools)
Request for resources
(to maintain or develop new tools)
Evidence of tool acceptance Reassure users about tool to:
- Promote continued use
— Promote usage of new tools by the same developers
- Promote usage by more diverse users
Gain community development Evidence of co-development Encourage contributions

Software evaluation can support identification for tool optimization and development and can demonstrate tool value to others.

Table 2. Example metrics.

Measure

Example metrics

Use

Tool dissemination

Tool usefulness

Tool reliability

Tool versatility

Interface acceptability

Performance

» Total unique downloads (Thelwall and Kousha 2016, Eisty et al.
2018, Zhao et al. 2021)

» New users (Begany ez al. 2021, Sayyed-Alikhani et al. 2021)

* Returning users (Begany et al. 2021, Sayyed-Alikhani ez al. 2021)

» Download count by version (Rossi ez al. 2010, Howison
etal. 2015)

* Download count by version

» Number of software engagements by user (Begany et al. 2021,
Chang et al. 2021)

* Proportion of runs without a crash or error (Eisty e al. 2018,
Hunter-Zinck et al. 2021)

* Test coverage (Hunter-Zinck et al. 2021)

« Distribution of data types (inferred from metadata) (Eisty
etal. 2018)

* Proportion of visitors who actually engage with the tool (Kumar
and Hasteer 2017, Ramakrishnan and Gunter 2017)

* User error frequency (Kumar and Hasteer 2017, Eisty ez al. 2018)

* Maximum memory usage (Eisty ez al. 2018)

* Average time-to—complete of algorithmic steps (Eisty et al. 2018)

* Determining popularity of a given tool

* Assessing if users are keeping up-to-date
* Determining prevalence of usage

* Improving error handling, bug fixes

« Improving tool flexibility & generalizability

* Graphical tool and website acceptability

* Requirements analysis
* Tuning

A variety of metrics can be used to attempt to interpret to usefulness, reliability, and uptake by the community and more. Here, we describe metrics used by
the authors of the paper. See Lenarduzzi et al. (2020), Eisty et al. (2018), Thelwall and Kousha (2016) for more information about metrics used by others.

the Research Software Alliance (ReSA) (Barker et al. 2023).
While scientific software has become critical to most research-
ers, the funding to support the maintenance of such software is
not reflective of the current level of usage (Siepel 2019). The

next major barriers were privacy concerns (38% of respond-
ents), technical issues (32% of respondents), and not knowing
what methods to use for evaluations (27% of respondents).
Despite these apparent challenges, 73% of respondents state
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that such evaluations have informed new development ideas,
60% stated that it informed documentation, and 54% stated
that it helped justify funding (respondents could select multiple
benefits). Thus, additional support for evaluations of software
usage and impact could greatly benefit the continued develop-
ment of software. Responses to an open-ended question asking
“Is there anything you would like to measure but have been
unable to capture?” included (each of these examples were
unique responses): collaborations that the tool supported, the
number of commercial applications using the tool, the fraction
of assumed user base that actually uses the tool, the down-
stream activity—what do users do with the results, and user
frustration. These responses outline many of the challenges
that developers often face. See Supplemental Table S1 and
Supplemental Note S2 for examples of the goals of the
respondents.

We also manually inspected 44 scientific research tools, 33
of which were funded by ITCR alone, and seven funded by
the Cancer Target Discovery and Development (CTD?)
Network (Aksoy et al. 2017), as well as four tools funded by
both. Each were inspected for infrastructure that could help
users know about the tool or how to use it, as well as possible
infrastructure related to software health metrics that indicate
how recently the code was rebuilt or tested (Srivastava and
Schumann 2011). We then investigated if there were any
associations with these aspects and usage. A variety of differ-
ent types of research-related tools or resources were
inspected—see Table 3. Each tool or resource was manually
inspected (by someone not involved in developing these tools)
to get the experience of a potential user briefly examining re-
lated websites to determine if the tool had: a DOI for the soft-
ware itself, information on how to cite the software,
information on how to contact the developers, documenta-
tion (and how much), an X/Twitter presence, and badges
about software health metrics (such as those related to main-
tenance and testing) (Srivastava and Schumann 2011) visible
on a related website.

To evaluate a proxy for usage, we used the SoftwareKG-
PMC database (Kriiger and Schindler 2020), which does not
include citations to tools, only plain-text mentions inferred
by a text-mining algorithm. This was to enable us to capture
cases where users may have mentioned but not necessarily
cited a tool. Importantly, mentions also do not always indi-
cate usage. The database does not know anything about these
tools per se, and not all of these mentions necessarily corre-
spond to the same tool. For example, DANA is an ITCR tool

Table 3. Scientific tools and resources evaluated.
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for microRNA analysis but there are other tools with the
same name. Although time since the tool release was the larg-
est contributor to variation in the number of papers describ-
ing usage, various aspects of infrastructure that could help
users know about a tool (social media on twitter), have confi-
dence in the tool (badges about software builds or tests), or
learn more about how to use the tool (extensive documenta-
tion and feedback mechanisms) all seemed to be associated
with an increased rate of manuscripts that described using
the tool. All show significant association (P < 0.05) with us-
age when not accounting for tool age. Only having extensive
feedback mechanisms was significantly associated when also
accounting for tool age (see Fig. 1). For more information
about this analysis, see our website https://hutchdatascience.
org/ITCR_Metrics_manuscript_website/.

3 Results

The results of our evaluation of scientific software suggests
that infrastructure can support the collection of more metrics
and support more mentions of software in papers.
Specifically, our results showed that active social media,
more in-depth documentation, clear methods to contact
developers, and software health metrics [metrics related to
how often the software is tested, developed, etc (Srivastava
and Schumann 2011)] appear to enhance mentions in papers.

The infrastructure described in Table 4 and Supplemental
Note S3 could enable more comprehensive metrics about
insights regarding software usage and impact. Funders and
developers should consider these elements when considering
the impact and new directions for a project.

4 Discussion

With new metrics collected through the software infrastruc-
ture described in Table 4 comes a new host of challenges that
require guidance. Here, we layout how the metrics collected
from the infrastructure discussed in the previous section
should be handled appropriately. The following are guidance
based on the composite experience of the authors:

4.1 Successful evaluations are anchored by an
understanding of the intended use of the software
The intended goal or purpose of the scientific software should
inform how the software is evaluated (Basili et al. 1994).
Computational tools are designed to support well-defined

Type Description Count Percentage
Plug-in/extension These tools are plug-in or extension software that adds func- 2 4.5
tionality to other software
Jupyter/Python These tools are scripts written in Python or Jypyter Notebooks 5 11.4
Database/Ontology These tools provide users access to data or standards 5 11.4
Computing platforms These tools allow users to upload data and perform analysis on 5 11.4
a cloud or server
Web-based tools These tools are hosted on a website where users can access the 6 13.6
tool and use it
Desktop applications/command- These tools require users to download the tool to their com- 9 20.5
line tools puter or server, desktop applications may or may not require
command-line interactions, while command-line tools do
R packages Software written in the R programming language 12 27.3
Total NA 44 100

Here, we show the variety among the 44 ITCR and CTD? scientific research tools/resources evaluated for various characteristics by manual inspection for
infrastructure used to support software evaluation metrics beyond software paper citations.
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Figure 1. Aspects of software infrastructure appear to be associated with a larger number of published manuscripts from users describing usage of the
software in the SoftwareKG-PMC database. The X-axis indicates the age of the software by showing the year that it was released. The Y-axis indicates
the log of the total number of papers that describe usage of the software in the SoftwareKG-PMC database. See Supplementary material and our

website for more information.

goals often called use cases (Gamma et al. 1995) for specific
sets of users called personas (Cooper 2004). Efforts to evalu-
ate the impact of tools should be guided by a clear under-
standing of these, use cases and personas to assess how well
the tools meet the intended goals and for all intended users.

4.2 Metric selection should be hypothesis driven

Collecting an exhaustive amount of user data before selecting
metrics can increase the risk that metrics are selected in a bi-
ased manner. This can lead to picking metrics that look good
but are not necessarily as meaningful to the intended usage of
the tool. To mitigate this, metrics can be selected ahead of time
based on a specific hypothesis to ultimately evaluate how well
the software supports its intended goals (Mullen 2020).

4.3 No single evaluation method works for every
type of software

No individual scheme for collecting metrics fits every type of soft-
ware tool. The meaning of a set of metrics may differ across con-
texts. For example, the location of a tool (e.g. on the web or
downloaded) can influence user access to software versions and
how one might collect metrics. For a web-based application,
users will rarely have access to older versions. Thus, developers
can add version updates and collect metrics with clarity about

how usage changed. For locally run tools, users may be using
older, previously-downloaded versions. Additionally, tools that
are installed on institutional servers have much smaller installa-
tion counts than those installed on individual computers. No one
metric is one size fits all and each software tool must be thought-
fully planned out for how it should be evaluated.

4.4 Metrics require interpretation

Metric interpretation is rarely straightforward. A spike may
correspond to a workshop using the tool or a recent publica-
tion citing the tool. Negative trends may indicate a break in
the academic calendar, holidays, down time of a host server,
or software bugs. It is also important to avoid comparisons
between metrics for tools with different users and contexts.

Total unique downloads might indicate software popular-
ity, but does not tell us whether users found it useful. Instead,
metrics about returned usage by the same users or the number
of launches of the software over a certain predefined session
time threshold may better evaluate actual usage. For tools
that offer access or analyses of different data types, one may
want to parse usage by data types to evaluate how useful the
tool appears to support different kinds of users. Specific
measures can provide a common basis comparing versions
and potentially against other similar software.
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Elements

Options

Tools to enable met-
ric collection

Possible enabled metrics

Considerations

Web presence

Citability

Contact

Usability testing

Workshops

Web-based tool

Documentation website

Provide a way to cite such
as a direct software DOI
(Fenner 2018), as well as
publishing software
manuscripts and infor-
mation on how to cite,
can help people to cite
your software

Feedback mechanisms

Discussion forums

Newsletter emails

* Observe a few people use
the tool
* Discussion forums

* Online or in-person
* Basics or new features

+ Cronitor for tools using
cron job scheduling
(Peters 2009))

* Google Analytics

» Google Analytics

* To create DOIs:
Zenodo, Dryad,
Synapse, and Figshare

« To track DOIs:
Altmetric

* GitHub issue templates
* Surveys

* Discourse

« Biostar (Parnell
etal 2011)

* Bioinformatics
Stack Exchange

» Google Groups

* Mailchimp
* HubSpot

» Zoom screen sharing
and recording

* Discussion
Forums (above)

+ Attendees can participate
in surveys

+ Identify where your
tool is being used

« Possibly identify what
data are being used

« Counts of page views
and scrolls

« Total citation counts
« Counts of citations by
journals of differ-

ent fields

« User feedback count
» Addressed user feed-
back count

« Metrics based on user
engagements and an-
swered questions

» Count of newslet-
ter openings
» Count of link clicks

« Count of unsubscribers
* Qualitative information

about how users inter-
act with your software

* Quantity, duration, and

attendance at work-
shops are metrics that

can be reported to fund-

ing agencies

May need to consider pri-
vacy restrictions for
tracking IP addresses

Pages with more views
may identify widely used
features or confus-
ing aspects

Semantic Scholar provides
reports that indicate
where citations have oc-
curred within scientific
articles. Direct DOIs for
software (in addition to
software manuscripts) is
a useful and recognized
method for allowing
others to cite software,
especially when manu-
scripts are not yet pub-
lished. See Smith ez al.
(2016) for best practices.
Not all DOI managers
are created equally and
some have more verifica-
tion processes (Amorim
etal. 2015)

Often users will only pro-
vide feedback if some-
thing is broken.
Depending on the tool,
many users may not be
comfortable with
GitHub Issues

Forums can illustrate the
amount of community
activity with a particular
tool (Parnell et al. 2011,
Howison et al. 2015).
They can also save time
for development as users
help each other instead
of developers answering
individual emails for re-
peat problems (Prli¢ and
Procter 2012). A code of
conduct can help create
a supportive community

Newsletters can help in-
form users about
new features

Even low numbers of us-
ability interviews (3) can
yield fruitful lessons that
can be paired with other
metrics to guide develop-
ment. Forums that pro-
vide Q&A can identify
usability issues and bugs
(Howison et al. 20135,
Patrick 2020)

Recordings can be posted
on social media (for ad-
ditional metrics).

(continued)
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Table 4. (continued)

Elements Options
ric collection

Tools to enable met-

Possible enabled metrics

Considerations

* YouTube videos

« Twitter/Mastodon
* Instagram

« LinkedIn

Social media

Reviews Review forum * SourceForge

* GitHub

* Hootsuite—social me-
dia management

» Engagement metrics
(video watch counts,
likes, etc.)

* Stars

» Watchers

* Forks

* Number of reviews

Pairing social media met-

rics with software en-
gagement metrics can
determine if outreach
strategies are successful

Positive reviews, active

community participa-
tion, and code review
can be reassuring to fun-

ders and users alike

Note that there are other helpful tools to enable metric collection. These are simply examples based on the experience of software developers funded by
ITCR, e.g. the developers of QIIME 2 (Bolyen et al. 2019) found metrics from workshops, forums, and other forms of outreach valuable for evaluating
community uptake and user experience. Altmetric at https://zenodo.org/, Google Analytics at https://docs.github.com/en/actions, Bioinformatics Stack
Exchange at ttps://bioinformatics.stackexchange.com, Cronitor at https:/cronitor.io, Discourse at https://www.discourse.org/, Dryad at https://datadryad.
org/, Figshare at https://figshare.com, Google Groups at https://support.google.com/groups, Hootsuite at https://www.hootsuite.com/, HubSpot at https://
www.hubspot.com, Mailchimp at https://mailchimp.com/, Semantic Scholar at https://www.semanticscholar.org/, Singularity at https://sylabs.io/,
Sourceforge at https://sourceforge.net/, Synapse at https://www.synapse.org/, and Zenodo at https://zenodo.org/.

4.5 Metrics of best practices provide indicators of
software health

Tracking adherence to best practices of software engineering
can be a useful way to assess software project health
Srivastava and Schumann (2011), including the use of version
control systems, high coverage of code with testing, and use
of automated or continuous integration. None of these meas-
ures of project health are perfect (and can be done poorly)
but can collectively indicate software health. Including
badges for such indicators on code repositories and websites
can give users and others confidence. Some software pack-
ages can help automatically assess package health like the
riskmetric package (https://pharmar.github.io/riskmetric/) for
evaluation of R packages (R Validation Hub et al. 2024).
Additional detail on these topics, can be found in The
Pragmatic Programmer(Thomas and Hunt 2019). See
Table 5 and Supplemental Note S4 for suggestions.

4.6 Metrics related to software quality and
reusability could reassure users and funders
Software reusability metrics have been suggested to enable
better discernment of the capacity for code to be reused in
other contexts. These metrics can also evaluate if code is writ-
ten to be more resilient over time to dependency changes and
other maintenance challenges. One example would be the de-
gree to which aspects of the software are independent of one
another (Mehboob et al. 2021). As research funders start to
value software maintenance more, metrics related to resil-
ience and reusability may become more valuable. Other simi-
lar metrics related to maintainability have been used in the
software community for some time relying on metrics such as
the number of code comments, lines of code, or code com-
plexity metrics (Wang 2006), but open source software proj-
ects with community contributors can make aspects related
software maintainability a challenge (Oman and Hagemeister
1994, Welker 2001, Ganpati et al. 2012).

5 Challenges and nuances

Here, we outline a number of challenges and nuances associ-
ated with evaluating metrics for software usage and impact.

5.1 Distorted metrics

Projects like the ITCR-funded Bioconductor (Huber et al.
2015), with a large variety of software packages, offer an op-
portunity to assess distortion of metrics by evaluating how
different packages are used over time, revealing important
nuances (see Table 6). Overall major themes seen include, ac-
cidental usage by scripts that accidentally loop through
downloading a piece of software many times, usage of soft-
ware to support other software for technical reasons, as well
as unexpected patterns of persistent use after a tool is theoret-
ically no longer as useful. This is believed to be due to down-
loads on servers using lists of historically typically used
packages. Finally, background levels of usage with low levels
of downloads even for tools that are no longer supported.

5.2 Clinical data challenges

Clinical data often contain protected health information
(PHI). Thus, the number of individuals that have access to
the data is generally smaller. Many tools containing clinical
data are also run at an enterprise level (such as the ITCR-
funded tool, EMERSE), meaning they are installed only one
time by system administrators and accounts are provisioned
to users. Thus, counting installations does not represent the
overall use. Further, security mechanisms to protect clinical
data inhibit developers from accessing the installed systems
themselves. Ultimately, due to downloads typically being at
an institutional level for clinical tools, metrics around soft-
ware downloads underestimate their impact. It would not be
realistic to compare the usage metrics of such tools to more
widely available and accessible tools.

5.3 Goodhart's law

Goodhart’s law states that “every measure which becomes a
target becomes a bad measure” (Hoskin 1996). For example,
h-indices (the number of papers an author has with that
many or more citations) are used to assess an author’s im-
pact. As the h-index grew in popularity, the number of
researchers included as coauthors, the number of citations
per paper, and the fraction of self-citations increased, each
leading to an increased h-index. Although metrics could be
used to bring about best practices for binary outcomes (i.e.
public deposition of code), for more quantitative metrics (e.g.
number of downloads) the results could easily become
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Table 5. Software health infrastructure.

Afiaz et al.

Tools to enable met-
ric collection

Infrastructure ~ Options

Possible enabled metrics

Significance for users, developers,
and funders

Version control Without
automation

* Git/GitHub (The insight
tab and API allow for
systematic met-
ric collection)

« Git/GitLab

« BitBucket

« GitHub actions
e Travis CI
« CircleCI

With automations

Testing Automated testing  * GitHub Actions

* Travis CI

* CircleCI
Licensing A variety of * Creative commons

licenses exist to
allow or disal-
low reuse and
to require
attribution

» Commit frequency (how of-
ten code is updated)

« Date of the most re-
cent commit

* Number of active
contributors

« Software versions updates

« Current build status (if the
software built without errors)

* Possible quantification of re-
use of your software code

Commit frequency allows assessment of how
actively the software is being maintained.
The number of contributors can indicate
sustainability. One single contributor may
pose a sustainability risk. Version infor-
mation can enable users to determine if
they are using the most up-to-date version.
Developers can utilize these metrics to de-
termine which projects need more atten-
tion and to garner support from funding
agencies to prove that they have done a
thorough job developing and maintaining
the software

Continuous integration and continuous de-
ployment or delivery are terms to describe
a situation where every time code is modi-
fied, the full code product is automatically
rebuilt or compiled. Continuous deploy-
ment or delivery describes the automatic
release of this new code to users. Delivery
in this case describes situations where the
software requires more manual releases
while deployment is seamless. GitHub
Actions can also help with metric collec-
tion from the GitHub API. Developers can
use build status to understand if the soft-
ware is performing appropriately. This
can help funders to recognize how well a
tool is working and being developed
and maintained

* Test code coverage (the frac-  Unit tests check individual pieces of code;
tion of lines of code in the
project that are covered
by tests)

component and integration tests check
that pieces of code behave correctly to-
gether; acceptance tests check the overall
software behaviour. Achieving in-depth
test coverage requires careful software de-
sign. Test coverage does not evaluate the
quality of the test cases or assertions. Test
metrics can help users, developers, and
funders understand how thoroughly and
robustly the code has been assessed for ab-
errant behaviour

Clearly indicating if and how people can re-
use your code will make them more com-
fortable to do so. Determining when this
is done can be a challenge, but requiring
attribution makes this more feasible. This
can indicate to users and funders if the
developers have carefully considered the
downstream use of their code outside of
their own software. This can better enable
additional tools to be built using your
code and can help you to track usage if
you use a license that requires attribution
for reused coded

Infrastructure that enables collecting metrics about software health (meaning how robustly software was built and maintained) (Srivastava and Schumann
2011), can reassure users and funders. Bitbucket at https://bitbucket.org/product, CircleCI at https:/circleci.com/docs, Creative Commons at https://
creativecommons.org/licenses/, GitLab at https://about.gitlab.com/, GitHub at https://github.org, GitHub actions at https://docs.github.com/en/actions, and

Travis CI at https://config.travis-ci.com/.

meaningless. The impact behind this concept cannot be en-
tirely avoided because of fundamentals of human behaviour
but one way to minimize this effect is to continue to evaluate
metrics over time, to consider if our metrics are truly measur-
ing what we think they are, to consider if our metrics are ac-
tually fair to a diverse range of projects, and to consider new
metrics as needed (Fire and Guestrin 2019). Funding agencies

need to consider how each type of tool is context-dependent,
and that impact should be compared between similar classes
of tools.

5.4 Security, legal and ethical considerations

Often with phone-home software (the collection of informa-
tion from the computers of users that downloaded or
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Table 6. Distorted metrics.

Distortion

Example

Accidental usage

Background usage

Technical versus research usage

Occasionally scripts used on servers may inadvertently download a package repeatedly and rapidly hun-
dreds to thousands of times, resulting in distorted download metrics that are not representative of real
usage. Unique IP download information is useful to distinguish between one user downloading many
times versus many users a few times. Given privacy concerns, an alternative solution could involve track-
ing the timing and approximate location of downloads with a threshold for what would be more than
expected as maximum real usage, like a group of people following a tutorial

There is a baseline background level of downloads across all packages in Bioconductor (including those
that are no longer supported). Thus, if a new package has 250 downloads in the first year this may seem
like a successful number, but actually it is similar to background levels

It can be difficult to discern if the usage of a package is for scientific research itself or supporting the imple-

mentation of other software. While both are arguably valuable, distinguishing between these motiva-
tions can help us understand a particular software’s impact in a field. For example, the S4Vectors
package (10.18129/B9.bioc.S4Vectors) (Pages et al. 2022) is an infrastructure package used by many
other packages for technical and non-biological reasons and is therefore not often directly downloaded
by end-users. This package is also included in automated checks for other Bioconductor packages using
GitHub actions. Another example of support implementation is in the context of container image use.
Containerization software [like Docker (https://www.docker.com/) and Singularity] often install soft-
ware packages for individual environments that could inflate usage metrics statistics. For instance, a user
who is actively developing a container may re-trigger the build and thus installation of associated soft-
ware many times over the course of a project

Usage persistence

The affy package (10.18129/B9.bioc.affy) (Gautier ez al. 2004) was one of the early packages for microar-

ray analysis, a technology that has largely been replaced by newer technologies, which can be seen by
the rate of microarray submissions to GEO overtime. However, despite the field transitioning away
from microarray methods (Mantione et al. 2014), the package was downloaded in 2021 at rates that
doubled the rates in 2011. The authors speculate that this could be due to people historically requesting
that affy be installed on servers and that this is just persisting, or perhaps it is being used for preliminary
hypothesis testing using existing micrarray data, or perhaps it is being used because other microarray
packages are no longer supported

Here, we provide more in-depth information about metric distortion themes identified evaluating tools in Bioconductor (which is ITCR-funded). GEO =

Gene Expression Omnibus.

installed a particular software) or web-based analytics, users
are tracked for specific usage. Occasionally software develop-
ers will notify users that they are being tracked, however this is
often not required. The General Data Protection Regulation
(GDPR), implemented in 2018, requires that organizations
anywhere in the world respect certain data collection obliga-
tions regarding people in the European Union. It is intended to
protect the data privacy of individuals and mostly guards
against the collection of identifiable personal information.
Data collection of software usage needs to be mindful of the
GDPR and any other international regulations. As science is
particularly an international pursuit, often users may reside
outside the country where the tool was developed.

One way to mitigate this is to let users choose if they wish
to be tracked. Developers can also design tracking to be more
anonymous. A genome visualization tool may track the num-
ber of unique uses, but not track what part of the genome
was visualized [as is the case for the UCSC Xena Genome
Browser (Goldman et al. 2020)]. Google Analytics (https:/
marketingplatform.google.com/about/analytics/) provides
support to mask unique IP addresses of visitors to a website
tracked by the system. Ethical and legal consequences should
be considered when designing or implementing tracking sys-
tems of software (see Supplemental Note S5 for more
information).

5.5 Conclusions

Our assessments indicate that cancer software developers of
the ITCR find it difficult to find the time or funding to evalu-
ate the impact and usage of their software using metrics, de-
spite their awareness of the benefits. Many have found such
evaluations useful for driving future development and obtain-
ing additional funding. A sizable portion (27%) of those

surveyed self-reported as not knowing what methods to use
for such evaluations. We also find from our manual evalua-
tion of a subset of scientific software tools that tools appear
to be more widely used when developers provide deeper doc-
umentation, badges about software health metrics, and more
in-depth contact information, as well as having a Twitter
presence. It is not clear why this is. It may be that those who
have the time and support to more thoroughly document and
advertise their tools may also have more resources to devel-
oper the tool itself, lending to wider usage. However, it may
also be that a social media presence brings new users to tools
and that the other infrastructure (badges, deeper documenta-
tion, etc.) help new users to trust software. Further studies
are necessary to understand these patterns. However, it sug-
gests that supporting developers to spend more time on such
elements could drive further usage of existing tools. We hope
that funding agencies will value supporting developers to
evaluate, promote, and maintain existing tools in addition to
the current typical model for most agencies to prioritize the
creation of new tools. A recent article (Merow et al. 2023)
suggested that a new type of manuscript for software updates
may help the field to better reward maintenance of existing
software. We argue that inclusion of evaluations of software
impact and usage could also be incorporated into such a
model for software-related manuscripts.

While metric collection beyond traditional citations is only
one piece of the software development workflow, we feel that
it has been underappreciated by funding institutions and pro-
motion committees. In addition, while common metrics may
be valuable for comparisons of similar types of tools, other
types of metrics may give more insight about the downstream
impact of a tool in terms of what development and advance-
ments in the field that the software supported. For example,
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perhaps we should consider how much a software tool
inspires the development of other tools, the value of the
papers that cite a tool (perhaps by citation rate, measures of
innovation, or measures of clinical impact, such as clinical tri-
als) Certainly as scientific software continues to be critical for
scientific and medical advancement, we should continue to
think beyond the software citation model and consider the
infrastructure and metrics we have discussed here as we
determine how to support scientific software developers in
the future.
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